Chaplygin Gas with Power-Law Dark Energy

Phongsaphat Rangdee

Abstract


Our universe is under the accelerating expansion phase. Many models have been proposed to explain this behavior. Among these models, the power-law and Chaplygin gas are two of the most interesting models. We studied the Chaplygin gas in the scenario of canonical power-law (CGP model) and phantom power-law (CGPP model). In these two models, the deceleration parameter (q0), the power-law exponents and the equation of state parameter (w0) at present are calculated. In this calculation, we used two observational data coming from WMAP9 (WMAP9+eCMB+BAO+H0) and PLANCK satellite reported in 2018 (TT,TE,EE+ lowE+Lensings+BAO). The results shown that the CGP model does not correspond to accelerating expansion conditions. In the CGPP model, the results shown that the CGPP model is correspond to accelerating expansion conditions. Finally, the values of the equation of state parameter coming from both CGP and CGPP models are the same and match all observational data under certain conditions.

Full Text:

PDF

References


Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., ???, & Yasuda, N. (2010). SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION. The Astrophysical Journal, 716(1), 712-738. https://doi.org/10.1088/0004-637x/716/1/712

Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., ???, & Walton, N. (2006). The Supernova Legacy Survey: measurement of ??_M, ??_?? and w from the first year data set. Astronomy & Astrophysics. 447(1), 31-48. https://doi.org/10.1051/0004-6361:20054185

Goldhaber, G., Groom, D. E., Kim, A., Aldering, G., Astier, P., Conley, A., ???, & York, T. (2001). Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. The Astrophysical Journal, 558(1), 359-384.

https://doi.org/10.1086/322460

Perlmutter, S., Aldering, G., Della Valle, M., Deustua, S., Ellis, R. S., Fabbro, S., ???, & Walton, N. (The Supernova Cosmology Project). (1998). Discovery of a supernova explosion at half the age of the Universe. Nature, 391, 51-54.

https://doi.org/10.1038/34124

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., ???, & Couch, W. J. (The Supernova Cosmology Project). (1999). Measurements of ?? and ?? from 42 High-Redshift Supernovae. The Astrophysical Journal, 517(2), 565-586. https://doi.org/10.1086/307221

Riess, Adam G., Filippenko, Alexei V., Challis, Peter, Clocchiattia, Alejandro, Diercks, Alan, Garnavich, Peter M., ???, & Tonry, John. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116(3), 1009-1038.

https://doi.org/10.1086/300499

Riess, Adam G. (1999). Peculiar velocities from type ia supernovae. The Astronomical Society of the Pacific Conference Series, Contribution to: Workshop on Towards an Understanding Cosmic Flows of Large Scale Structure, 201(2000), 80-85. https://arxiv.org/abs/astro-ph/9908237

Riess, Adam G., Strolger, Louis-Gregory, Tonry, John, Casertano, Stefano, Ferguson, Henry C., Mobasher, Bahram, ???, & Tsvetanov, Zlatan. (2004). Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. The Astrophysical Journal, 607(2), 665-687. https://doi.org/10.1086/383612

Riess, Adam G., Strolger, Louis-Gregory, Casertano, Stefano, Ferguson, Henry C., Mobasher, Bahram, Gold, Ben, ???, & Stern, Daniel. (2007). New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ??? 1: Narrowing Constraints on the Early Behavior of Dark Energy. The Astrophysical Journal, 659(1), 98-121. https://doi.org/10.1086/510378

Tonry, John L., Schmidt, Brian P., Barris, Brian, Candia, Pablo, Challis, Peter, Clocchiatti, Alejandro, ???, & Suntzeff, Nicholas B. (2003). Cosmological Results from High-z Supernovae. The Astrophysical Journal, 594(1), 1-24.

https://doi.org/10.1086/376865

Scranton, R., Connolly, A. J., Nichol, R. C., Stebbins, A., Szapudi, I., Eisenstein, D. J., Afshordi, N., ???, & Vogeley, Michael S. (SDSS collaboration). (2003). Physical Evidence for Dark Energy. https://arxiv.org/abs/astro-ph/0307335

Tegmark, M., Strauss, M., Blanton, M., Abazajian, K., Dodelson, S., Sandvik, H., ???, & York, Donald G. (2004). Cosmological parameters from SDSS and WMAP. Physical Review D, 69(10), 103201.

https://doi.org/10.1103/PhysRevD.69.103501

Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M. R., Bennett, C. L., ???, & Wright, E. L. (2011). SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS. The Astrophysical Journal Supplement Series, 192(2), 16. https://doi.org/10.1088/0067-0049/192/2/16

Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G., ???, & Wright, E. L. (2011). SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 192(2), 18. https://doi.org/10.1088/0067-0049/192/2/18

Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., ???, & Wright, E. L. (2013). NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS. The Astrophysical Journal Supplement Series, 208(2), 19. https://doi.org/10.1088/0067-0049/208/2/19

Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., ???, & Wright, E. L. (2013). NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS. The Astrophysical Journal Supplement Series, 208(2), 20. https://doi.org/10.1088/0067-0049/208/2/20

Hu, Jian-Wei, Cai, Rong-Gen, Guo, Zong-Kuan, & Hu, Bin. (2014). Cosmological parameter estimation from CMB and X-ray cluster after Planck. Journal of Cosmology and Astroparticle Physics, 2014, 020. https://doi.org/10.1088/1475-7516/2014/05/020

Masi, S., Ade, P. A. R., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A., ???, & Vittorio, N. (2002). The BOOMERanG experiment and the curvature of the universe. Progress in Particle and Nuclear Physics, 48(1), 243-261. https://doi.org/10.1016/S0146-6410(02)00131-X

Allen, S. W., Schmidt, R. W., Ebeling, H., Fabian, A. C., & Speybroeck, L. van. (2004). Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 353(2), 457-467. https://doi.org/10.1111/j.1365-2966.2004.08080.x

Rapetti, David, Allen, Steven W., & Weller, Jochen. (2005). Constraining dark energy with X-ray galaxy clusters, supernovae and the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 360(2), 555-564. https://doi.org/10.1111/j.1365-2966.2005.09067.x

Copeland, Edmund J., Sami, M., & Tsujikawa, Shinji. (2006). DYNAMICS OF DARK ENERGY. International Journal of Modern Physics D, 15(11), 1753-1936. https://doi.org/10.1142/S021827180600942X

Padmanabhan, T. (2005). Dark Energy: The Cosmological Challenge of the Millennium. Current Science, 88(7), 1057-1067. https://arxiv.org/abs/astro-ph/0411044

Padmanabhan, T. (2006). Dark Energy: Mystery of the Millennium. American Institute of Physics Conference Proceedings, 861(1), 179-196. https://doi.org/10.1063/1.2399577

Amendola, L., & Tsujikawa, S. (2010). Dark Energy: Theory and Observations. 1st Edition. New York. Cambridge University Press.

Dutta, Sourish, Saridakis, Emmanuel N., & Scherrer, Robert J. (2009). Dark energy from a quintessence (phantom) field rolling near a potential minimum (maximum). Physical Review D, 79(10), 103005.

https://doi.org/10.1103/PhysRevD.79.103005

Liddle, Andrew R., & Scherrer, Robert J. (1999). Classification of scalar field potentials with cosmological scaling solutions. Physical Review D, 59(2), 023509. https://doi.org/10.1103/PhysRevD.59.023509

Ratra, Bharat, & Peebles, P. J. E. (1988). Cosmological consequences of a rolling homogeneous scalar field. Physical Review D, 37(12), 3406-3427. https://doi.org/10.1103/PhysRevD.37.3406

Wetterich, C. (1988). Cosmology and the fate of dilatation symmetry. Nuclear Physics B, 302(4), 668-696. https://doi.org/10.1016/0550-3213(88)90193-9

Garousi, Mohammad R. (2000). Tachyon couplings on non-BPS D-branes and Dirac???Born???Infeld action. Nuclear Physics B, 584(1-2), 284-299. https://doi.org/10.1016/S0550-3213(00)00361-8

Rangdee, Rachan, & Gumjudpai, Burin. (2014). Tachyonic (phantom) power-law cosmology. Astrophysics and Space Science, 349, 975-984. https://doi.org/10.1007/s10509-013-1680-2

Sen, Ashoke. (2002a). Rolling Tachyon. Journal of High Energy Physics, 2002, 048. https://doi.org/10.1088/1126-6708/2002/04/048

Sen, Ashoke. (2002b). Tachyon Matter. Journal of High Energy Physics, 2002, 065. https://doi.org/10.1088/1126-6708/2002/07/065

Armendariz-Picon, C., Mukhanov, V., & Steinhardt, Paul J. (2000). Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Physical Review Letters, 85(21), 4438. https://doi.org/10.1103/PhysRevLett.85.4438

Armendariz-Picon, C., Mukhanov, V., & Steinhardt, Paul J. (2001). Essentials of k-essence. Physical Review D, 63(10), 103510.

https://doi.org/10.1103/PhysRevD.63.103510

Colistete Jr., R., Fabris, J. C., Goncalves, S. V. B., & Souza, P. E. de. (2002). Contribution to: 18th IAP Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on the Accelerating Universe. https://arxiv.org/abs/gr-qc/0210079

Dev, Abha, Alcaniz, J. S., & Jain, Deepak. (2003). Cosmological consequences of a Chaplygin gas dark energy. Physical Review D, 67(2), 023515. https://doi.org/10.1103/PhysRevD.67.023515

Gorini, Vittorio, Kamenshchik, Alexander, & Moschella, Ugo. (2003). Can the Chaplygin gas be a plausible model for dark energy?. Physical Review D, 67(6), 063509. https://doi.org/10.1103/PhysRevD.67.063509

Gorini, V., Kamenshchik, A., Moschella, U., & Pasquier, V. (2006). THE CHAPLYGIN GAS AS A MODEL FOR DARK ENERGY. The Tenth Marcel Grossmann Meeting, 840-859.

https://doi.org/10.1142/9789812704030_0050

Saha, Subhajit, Ghosh, Saumya, & Gangopadhyay, Sunandan. (2017). Interacting Chaplygin gas revisited. Modern Physics Letters A, 32(22), 1750109. https://doi.org/10.1142/S0217732317501097

Dev, Abha, Jain, Deepak, & Lohiya, Daksh. (2008). Power law cosmology - a viable alternative. https://arxiv.org/abs/0804.3491

Gumjudpai, Burin. (2013). QUINTESSENTIAL POWER-LAW COSMOLOGY: DARK ENERGY EQUATION OF STATE. Modern Physics Letters A, 28(29), 1350122. https://doi.org/10.1142/S0217732313501228

Kumar, Suresh. (2012). Observational constraints on Hubble constant and deceleration parameter in power-law cosmology. Monthly Notices of the Royal Astronomical Society, 422(3), 2532-2538. https://doi.org/10.1111/j.1365-2966.2012.20810.x

Jain, Deepak, Dev, Abha, & Alcaniz, J. S. (2003). The angular size???redshift relation in power-law cosmologies. Classical and Quantum Gravity, 20(20), 4485-4494. https://doi.org/10.1088/0264-9381/20/20/311

Zhu, Zong-Hong, Hu, Ming, Alcaniz, J. S., & Liu, Yu-Xing. (2008). Testing power-law cosmology with galaxy clusters. Astronomy & Astrophysics, 483(1), 15-18. https://doi.org/10.1051/0004-6361:20077797

Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., ???, & Zonca, A. (Planck Collaboration) (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910

Gumjudpai, Burin. (2020). Cosmology: A Prologue. 1st Edition. Phitsanulok. Phitsanulok Dot Com. 344-345. (in Thai)

Caldwell, R. R. (2002). A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B, 545(1-2), 23-29. https://doi.org/10.1016/S0370-2693(02)02589-3

Caldwell, Robert R., Kamionkowski, Marc, & Weinberg, Nevin N. (2003). Phantom Energy: Dark Energy with w<-1 Causes a Cosmic Doomsday. Physical Review Letters, 90(7), 071301.

https://doi.org/10.1103/PhysRevLett.91.071301


Refbacks

  • There are currently no refbacks.
301 Moved Permanently

301 Moved Permanently


nginx