Semigroups with Some Conditions which do not Admit a Distributive Near – ring Structure

Manoj Siripitukdet

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand E- mail: manojs@nu.ac.th

ABSTRACT

 In this paper, we considered semigroups with some conditions and showed that they did not admit a distributive near – ring structure.

Keywords: semigroups, distributive near – ring

INTRODUCTION

A system $(S, +, \cdot)$ is called a *(right) near – ring* (Pilz, 1983) if (i) $(S, +)$ is a group, (ii) (S, \cdot) is a semigroup and (iii) $(x+y)\cdot z = x\cdot z + y\cdot z$ for all *x*, *y*, *z* ∈ *S* (a right distributive law). For a (right) near – ring $(S, +, \cdot)$, an element *d* ∈ *S* is called *distributive* (Pilz, 1983) if $d \cdot (x + y) = d \cdot x + d \cdot y$ for all $x, y \in S$. Let $D = \{d \in S \mid d \text{ is distributive}\}.$ A (right) near – ring S is called *distributive* (Pilz, 1983) if $S = D$. Then, clearly, *S* is a distributive near – ring if and only if for all d ∈ *S*, *d* is distributive.

An element *a* of a semigroup *S* is a *zero* if $ax = xa = a$ for all $x \in S$ and we denote *a* by 0.

For any semigroup *S*, let $S^0 = S$ if *S* has a zero and *S* contains more than one element, and otherwise, let S^0 be the semigroup with zero 0 adjoined. For a symbol S^1 , we define $S^1 = S$ if *S* has an identity, otherwise, let $S^1 = S \cup \{1\}$ if *S* has no identity. A semigroup *S* is said to *admit a ring structure* (Satyanarayana, 1981) if there exists some ring *R* such that S^0 is isomorphic to the semigroup (R, \cdot) where \cdot is the multiplication of *R*, or equivalently, there exists an operation + on S^0 such that $(S^0, +, \cdot)$ is ring where \cdot is the operation on S^0 .

 A semigroup admitting a distributive near – ring structure is defined similarly.

Let $SDN := \{ S \mid S$ is a semigroup admitting a distributive near – ring structure}, $SR := \{ S \mid S$ is a semigroup admitting a ring structure.

Clearly, *SR* \subseteq *SDN*. That is, if *S* is a semigroup admitting a ring structure, then *S* admits a distributive near – ring structure. Semigroups admitting a ring structure

have long been studied. For example, see (Chu and Shyr, 1980; Keprasit and Siripitukdet, 2002; Lawson, 1969; Peinado, 1970; Satyanarayana, 1981).

For a semigroup *S*, let $E(S)$ denote the set of all idempotents of *S*. Then $(E(S), \leq)$ is a partially ordered set (Howie, 1976) where \leq is defined by for $e, f \in E(S)$, $e \leq f$ if and only if $e = ef = fe$.

In this paper, semigroups with some conditions are considered and investigated when or whether they admit a distributive near – ring structure.

The next proposition is used in this paper.

Proposition 1 (Siripitukdet, 2001). Let $(S, +, \cdot)$ be a ditributive near – ring. Then *the following statements hold:*

- (i) $0x = x0 = 0$ for all $x \in S$ where 0 is the identity of the group S.
- (ii) $-(-x) = x$ *for all* $x \in S$.

(iii)
$$
x(-y) = (-x)y = -(xy) \text{ and } (-x)(-y) = xy \text{ for all } x, y \in S.
$$

- (iv) *For all x, y, u, v* $\in S$ *, xy + uv = uv + xy.*
- (v) *If* $S = S^2$ where $S^2 = \{xy | x, y \in S\}$, then S is a ring.
- (vi) *If S has a left or right multiplicative identity, then S is a ring (hence S has a multiplicative identity, then S is a ring).*
- (vii) *For each* $x \in S$, $(xS,+)$ *and* $(Sx,+)$ *is a group where* $xS = \{xs \mid s \in S\}$ *and* $Sx = \{ sx \mid s \in S \}.$

Theorem 2. Let S be a semigroup with zero 0 and $E(S) > 2$.

- (i) *If the product of every two distinct elements in E*(*S*) *is* 0*, then S does not admit a distributive near – ring structure.*
- (ii) *If the elements in E*(*S*) *form a chain, then S does not admit a distributive near – ring structure.*

Proof. (i) Assume that *S* admits a distributive near – ring structure. Then there is a binary operation + on *S* such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the given binary operation of *S*. Let $e, f \in E(S) \setminus \{0\}$ be such that $e \neq f$. Then $(e+f)^2 = (e+f)(e+f) = e^2 + ef + fe + f^2 = e+f$. Thus $e+f \in E(S)$ and $e + f \neq f$. By assumption, $0 = (e + f) f = ef + f^2 = f$, a contradiction. Hence *S*

does not admit a distributive near – ring structure. (ii) Recall that $(E(S), \leq)$ is a partially ordered set where \leq is defined by for $e, f \in E(S)$, $e \leq f$ if and only if $e = ef = fe$.

Assume that *S* admits a distributive near – ring structure. Then there is a binary operation + on *S* such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the

given binary operation of *S*. Let $e, f \in E(S) \setminus \{0\}$ be two distinct elements such that $e < f$. Then $e = ef = fe$. Now

 $(f - e)^2 = (f - e)(f - e) = f^2 - ef - fe + e^2 = f - e - e + e = f - e$, so $f - e \in E(S)$. By assumption, $e < f - e$ or $f - e < e$ or $e = f - e$. If $e < f - e$, then $e = e(f - e) = ef - e^2 = e - e = 0$, a contradiction. If $f - e < e$, then $f - e = (f - e)e = fe - e = e - e = 0$, a contradiction. Hence $e = f - e$. Then $e = e^2 = e(f - e) = ef - e = e - e = 0$, a contradiction. Therefore *S* does not admit a distributive near – ring. \Box

MAIN RESULTS

 Some conditions are given for a semigroup with zero and show that $S \in SDN$ if and only if $|S| \le 2$.

Theorem 3. *Let S be a semigroup with zero* 0. *Assume that* (i) *for* $x, y \in S$, $xS^1 \subseteq yS^1$ *or* $yS^1 \subseteq xS^1$ *and* (ii) *for* $x, y \in S$, $xS^1 = yS^1$ *implies* $x = y$. *Then S admits a distributive near – ring structure if and only if* $|S| \le 2$.

Proof. Assume that *S* admits a distributive near – ring structure. Then there is a binary operation + on *S* such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the given binary operation of *S*. Suppose that $|S| > 2$. Let *x*, *y* be two nonzero distinct elements in *S*. By assumption (i), $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. Without loss of generality, we may assume that $xS^1 \subseteq yS^1$. Since $x \in xS^1$, $x = ys_1$ for some $s_1 \in S^1$. Since $x \neq y$, $s_1 \neq 1$.

Thus $x = y s_1 \in yS$ (1) By the assumption (i), $(x + y)S^1 \subseteq xS^1$ or $xS^1 \subseteq (x + y)S^1$. **Case 1.** $(x + y)S^1 \subseteq xS^1$. Since $x + y \in (x + y)S^1$, $x + y = xs_2$ for some $s_2 \in S^1$. Thus $x + y \in xS$ and $y = xs_2 - x$. From (1), $x = ys_1 = (xs_2 - x)s_1 = xs_2s_1 - xs_1$ $(x = x(s_2 s_1 - s_1) \in xS$. Since $(xS, +)$ is a group, $y = (-x) + (x + y) \in xS$. Thus $yS^1 \subseteq xS^1$. By the condition (ii), we have $x = y$, a contradiction. **Case 2.** $xS^1 \subseteq (x+y)S^1$. Since $x \in xS^1 \subseteq (x+y)S^1$, $x = (x+y)s_3$ for some $s_3 \in S$.

Thus
$$
x \in (x + y)S
$$
. (2)

By the condition(i), $(x+y)S^1 \subseteq yS^1$ or $yS^1 \subseteq (x+y)S^1$.

Subcase 2.1.
$$
(x + y)S^1 \subseteq yS^1
$$
. Since $x + y \in (x + y)S^1 \subseteq yS^1$, we have
 $x + y = ys_4$ for some $s_4 \in S$. (3)

Let $s_5 = -s_1 + s_4$. Then $s_5 \in S$. Now $ys_4s_5 = (x+y)s_5 \in (x+y)S$. By (2), we have that $xs_5 \in (x + y)$ *S*. Since $((x + y)S, +)$ is a group and ys_4s_5 , $xs_5 \in (x + y)S$, we have $- (xs_5) + (ys_4 s_5) \in (x + y) S$. By (3) and (1), we obtain that $y = -x + ys_4 = -(ys_1) + ys_4 = y(-s_1 + s_4) = ys_5 = (-x + ys_4)s_5$ $= -(xs_5) + (ys_4s_5) \in (x + y)$ S.

Thus $yS^1 \subseteq ((x+y)S)S^1 \subseteq (x+y)S^1$. By the condition (ii), $y = x+y$ so $x = 0$, a contradiction.

Subcase 2.2. $yS^1 \subseteq (x + y)S^1$.

Since $y \in yS^1 \subseteq (x+y)S^1$, $y = (x+y)s_6$ for some $s_6 \in S$. Thus $y \in (x + y)S$. (4)

From (2) and (4) and $((x + y)S, +)$ is a group, we get that $x + y \in (x + y)S$. Thus $(x + y = (x + y) s₇$ for some $s₇ \in S$. From (1), we have that

 $x + y = xs_7 + ys_7 = ys_1s_7 + ys_7 = y(s_1s_7 + s_7) \in yS$.

Therefore $(x + y)S^1 \subseteq (yS)S^1 \subseteq yS^1$. By the condition (2), $x + y = y$ so $x = 0$, a contradiction. Therefore $|S| \leq 2$.

Conversely, assume that $|S| \le 2$. If $|S| = 1$, then $S = \{0\}$ so we are done. Assume that $|S| = 2$. Let $S = \{0, x\}$. Then $x^2 = x$ or $x^2 = 0$, so $(S, \otimes) \cong (Z_2, \cdot)$ where ⊗ is the binary operation of *S* and ⋅ is the usual multiplication of \mathbb{Z}_2 or *S* is a zero semigroup. Hence *S* admits a ring structure.

Corollary 4. *Semigroups* [0, 1) *and* [0, 1] *under the usual multiplication do not admit a distributive near – ring structure.*

Proof. Let $S \in \{ [0, 1), [0, 1] \}$. Then $S^1 = [0, 1]$. If for $x, y \in S$, then $x \leq y$ or $y \le x$ and so $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. If for $x, y \in S$ and $xS^1 \subseteq yS^1$, then $[0, x] = [0, y]$ so $x = y$. By Theorem 3, *S* does not admit a distributive near – ring structure.

Remark: Under the usual multiplication, we see that $[0,1) \equiv (1, \infty)^0$ and $[0, 1] \cong [1, \infty)^0$ by defining $f(x) = \frac{1}{x}$ for all $x \in (0, 1)$ and $f(0) = 0$ and $g(x) = \frac{1}{x}$ for all $x \in (0,1]$ and $g(0) = 0$, respectively. By Corollary 4, $(1, \infty)$ and $[1, \infty)$ do not admit a distributive near – ring structure.

Theorem 5. *Let S be a semigroup without zero. Assume that*

- (i) *for* $x, y \in S$, $xS^1 \subseteq yS^1$ *or* $yS^1 \subseteq xS^1$ *and*
- (ii) *for* $x, y \in S$, $xS^1 = yS^1$ *implies* $x = y$.

Then S adimits a distributive near – ring structure if and only if $|S| = 1$.

Proof. Assume that *S* admits a distributive near – ring structure. Then there is an operation + on S^0 such that $(S^0, +, \cdot)$ is a distributive near – ring where \cdot is the given operation on S^0 . Suppose that $|S| > 1$. Let *x*, *y* be distinct elements in *S*. By (i), $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. We may assume that $xS^1 \subseteq yS^1$. By the same proof in Theorem 3, we have that $x = y s_1 \in yS$ and $(x + y) S^1 \subseteq xS^1$ or $xS^1 \subseteq (x + y)S^1$. **Case 1.** $(x+y)S^1 \subseteq xS^1$. Using the same proof as in Theorem 3 case 1, we have

that $(x + y) \in xS \subseteq xS^0$ and $x \in xS \subseteq xS^0$. Since $(xS^0, +)$ is a group, $y = -x + (x + y) \in xS^0$ which implies that $y \in xS$. Thus $yS^1 \subseteq xSS^1 \subseteq xS^1$. By (ii), $x = y$, a contradiction.

Case 2. $xS^1 \subseteq (x+y)S^1$. Using the same proof as in Theorem 3, we have $x \in (x + y)$ *S*. By (i) $(x + y)S^1 \subseteq yS^1$ or $yS^1 \subseteq (x + y)S^1$.

Subcase 2.1. $(x+y)S^1 \subseteq yS^1$. Modify the proof of Theorem 3 in subcase 2.1 by using the fact that $(x + y)S \subseteq (x + y)S^{0}$ and $((x + y)S^{0}, +)$ is a group, we have that $yS^1 \subseteq (x + y)S^1$. By (ii), $y = x + y$ so $x = 0$, a contradiction.

Subcase 2.2. $yS^1 \subseteq (x+y)S^1$. Modify the proof of Theorem 3 in subcase 2.2 by using the fact that $((x+y)S^0, +)$ is a group, we have that $(x+y)S^1 \subseteq yS^1$. By (ii), $x + y = y$ so $x = 0$, a contradiction. Therefore $|S| = 1$.

The converse is obvious. \Box

Corollary 6. *Semigroups* (0,1) *and* (0,1] *under the usual multiplication do not admit a distributive near – ring structure.*

Proof. It is similar to the proof of Corollary 4.

The last section, we give an example satisfying the condition (i) in Theorem 2.

Example. Let *R* be a ring with identity $1 \neq 0$ where 0 is the identity of the group *R* and let *n* be a positive integer greater than 1. For $i, j \in \{1, 2, ..., n\}$, let $E^{ij} = \left[\left(e^{ij} \right)_{st} \right]$ be a matrix in $M_n(R)$ defined by

$$
\left(e^{ij}\right)_{st} = \begin{cases} 1 & \text{if } s = i \text{ and } t = j, \\ 0 & \text{otherwise} \end{cases}
$$

i.e.

$$
E^{ij} = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} \leftarrow \text{row } i
$$

column *j*

For $x \in R$,

$$
xE^{ij} = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & x & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \leftarrow \text{row } i
$$

column *j*

Let $S = \{ xE^{ij} | x \in R \text{ and } i, j \in \{1, 2, 3, ..., n\} \}$. Then, clearly, (S, \cdot) is a semigroup under the usual multiplication of matrices.

For *i*, *j*, *s*, $t \in \{1, 2, ..., n\}$ and $x, y \in R$, $(xE^{ij})(yE^{st}) = \begin{cases} xyE^{it} & if j=s, \end{cases}$ 0 if $j \neq s$. $\mathbf{x}E^{ij}$ $\left(yE^{st}\right) = \begin{cases} xyE^{it} & \text{if } j = s \end{cases}$ $=\begin{cases} xyE^{it} & if \ j=s \\ 0 & if \ j\neq s \end{cases}$ ⎨ \overline{a}

It is clear that the set of all nonzero-idempotents of *S* is $\{E^{ii} | i \in \{1, 2, ..., n\}\}.$ Clearly, for $i, j \in \{1, 2, ..., n\}$ and $i \neq j, (E^{ii}) (E^{jj}) = \overline{0}$ where $\overline{0}$ is the zero matrix in $M_n(R)$. By Theorem 2 (i), *S* does not admit a distributive near – ring structure.

CONCLUSION

Some conditions (in Theorem 3) for a semigroup with zero and without zero are investigated and showed that a semigroups with zero (without zero) satisfying this conditions belong to the class *SDN* if and only if $|S| \le 2(|S| = 1)$.

REFERENCES

- Chu, D.D. and Shyr, H.J. 1980. Monoids of Languages Admitting Ring Structure. *Semigroup Forum* 19, 127 – 132.
- Howie, J.M. 1976. *An Introduction to Semigroup Theory*. London: Academic Press.
- Kemprasit, Y. and Siripitukdet, M. 2002. Matrix Semigroups Admitting ring structure*. Bull. Cal. Math. Soc.* **94**, (5), 409-412.
- Lawson, L.J.M. 1969. *The Multiplicative Semigroup of a Ring*. Doctoral dissertation, University of Tennessee.

Peinado, R.E. 1970. On Semigroups Admitting Ring Structure. *Semigroup Forum*, 189 – 208.

Pilz, G. 1983. Near – rings, Netherland, North – Holland.

- Satyanarayana, M. 1981. On Semigroup Admitting Ring Structure IV. *Semigroup Forum* 23, $7 - 14.$
- Siripitukdet, M. 2001. *Semigroup Admitting skew ring or Skew Semifield structures*. Doctoral dissertation, Chulalongkorn University.