Semigroups with Some Conditions which do not Admit a Distributive Near – ring Structure

Manoj Siripitukdet

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand E- mail: <u>manojs@nu.ac.th</u>

ABSTRACT

In this paper, we considered semigroups with some conditions and showed that they did not admit a distributive near – ring structure.

Keywords: semigroups, distributive near - ring

INTRODUCTION

A system $(S, +, \cdot)$ is called a *(right) near - ring* (Pilz, 1983) if (i) (S, +) is a group, (ii) (S, \cdot) is a semigroup and (iii) $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in S$ (a right distributive law). For a (right) near - ring $(S, +, \cdot)$, an element $d \in S$ is called *distributive* (Pilz, 1983) if $d \cdot (x+y) = d \cdot x + d \cdot y$ for all $x, y \in S$. Let $D = \{d \in S \mid d \text{ is distributive}\}$. A (right) near - ring S is called *distributive* (Pilz, 1983) if S = D. Then, clearly, S is a distributive near - ring if and only if for all $d \in S$, d is distributive.

An element *a* of a semigroup *S* is a *zero* if ax = xa = a for all $x \in S$ and we denote *a* by 0.

For any semigroup S, let $S^0 = S$ if S has a zero and S contains more than one element, and otherwise, let S^0 be the semigroup with zero 0 adjoined. For a symbol S^1 , we define $S^1 = S$ if S has an identity, otherwise, let $S^1 = S \cup \{1\}$ if S has no identity. A semigroup S is said to *admit a ring structure* (Satyanarayana, 1981) if there exists some ring R such that S^0 is isomorphic to the semigroup (R, \cdot) where \cdot is the multiplication of R, or equivalently, there exists an operation + on S^0 such that $(S^0, +, \cdot)$ is ring where \cdot is the operation on S^0 .

A semigroup admitting a distributive near – ring structure is defined similarly.

Let $SDN := \{S \mid S \text{ is a semigroup admitting a distributive near - ring structure}\},\$

 $SR := \{S \mid S \text{ is a semigroup admitting a ring structure}\}.$

Clearly, $SR \subseteq SDN$. That is, if S is a semigroup admitting a ring structure, then S admits a distributive near – ring structure. Semigroups admitting a ring structure

have long been studied. For example, see (Chu and Shyr, 1980; Keprasit and Siripitukdet, 2002; Lawson, 1969; Peinado, 1970; Satyanarayana, 1981).

For a semigroup S, let E(S) denote the set of all idempotents of S. Then $(E(S), \leq)$ is a partially ordered set (Howie, 1976) where \leq is defined by for $e, f \in E(S), e \leq f$ if and only if e = ef = fe.

In this paper, semigroups with some conditions are considered and investigated when or whether they admit a distributive near - ring structure.

The next proposition is used in this paper.

Proposition 1 (Siripitukdet, 2001). Let $(S, +, \cdot)$ be a ditributive near – ring. Then the following statements hold:

- (i) 0x = x0 = 0 for all $x \in S$ where 0 is the identity of the group S.
- (ii) -(-x) = x for all $x \in S$.

(iii)
$$x(-y) = (-x)y = -(xy)$$
 and $(-x)(-y) = xy$ for all $x, y \in S$.

- (iv) For all $x, y, u, v \in S$, xy + uv = uv + xy.
- (v) If $S = S^2$ where $S^2 = \{xy | x, y \in S\}$, then S is a ring.
- (vi) If S has a left or right multiplicative identity, then S is a ring (hence S has a multiplicative identity, then S is a ring).
- (vii) For each $x \in S$, (xS, +) and (Sx, +) is a group where $xS = \{xs \mid s \in S\}$ and $Sx = \{sx \mid s \in S\}$.

Theorem 2. Let *S* be a semigroup with zero 0 and E(S) > 2.

- (i) If the product of every two distinct elements in E(S) is 0, then S does not admit a distributive near ring structure.
- (ii) If the elements in E(S) form a chain, then S does not admit a distributive near ring structure.

Proof. (i) Assume that *S* admits a distributive near – ring structure. Then there is a binary operation + on *S* such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the given binary operation of *S*. Let $e, f \in E(S) \setminus \{0\}$ be such that $e \neq f$. Then $(e+f)^2 = (e+f)(e+f) = e^2 + ef + fe + f^2 = e + f$. Thus $e+f \in E(S)$ and $e+f \neq f$. By assumption, $0 = (e+f)f = ef + f^2 = f$, a contradiction. Hence *S* does not admit a distributive near – ring structure.

(ii) Recall that $(E(S), \leq)$ is a partially ordered set where \leq is defined by for $e, f \in E(S), e \leq f$ if and only if e = ef = fe.

Assume that S admits a distributive near – ring structure. Then there is a binary operation + on S such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the

given binary operation of S. Let $e, f \in E(S) \setminus \{0\}$ be two distinct elements such that e < f. Then e = ef = fe. Now

 $(f-e)^2 = (f-e)(f-e) = f^2 - ef - fe + e^2 = f - e - e + e = f - e$, so $f-e \in E(S)$. By assumption, e < f-e or f-e < e or e = f - e. If e < f-e, then $e = e(f-e) = ef - e^2 = e - e = 0$, a contradiction. If f-e < e, then f-e = (f-e)e = fe - e = e - e = 0, a contradiction. Hence e = f - e. Then $e = e^2 = e(f-e) = ef - e = e - e = 0$, a contradiction. Therefore *S* does not admit a distributive near - ring.

MAIN RESULTS

Some conditions are given for a semigroup with zero and show that $S \in SDN$ if and only if $|S| \le 2$.

Theorem 3. Let *S* be a semigroup with zero 0. Assume that (i) for $x, y \in S, xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$ and (ii) for $x, y \in S, xS^1 = yS^1$ implies x = y. Then *S* admits a distributive near – ring structure if and only if $|S| \le 2$.

Proof. Assume that *S* admits a distributive near – ring structure. Then there is a binary operation + on *S* such that $(S, +, \cdot)$ is a distributive near – ring where \cdot is the given binary operation of *S*. Suppose that |S| > 2. Let *x*, *y* be two nonzero distinct elements in *S*. By assumption (i), $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. Without loss of generality, we may assume that $xS^1 \subseteq yS^1$. Since $x \in xS^1$, $x = ys_1$ for some $s_1 \in S^1$. Since $x \neq y$, $s_1 \neq 1$.

Thus $x = ys_1 \in yS$ (1) By the assumption (i), $(x+y)S^1 \subseteq xS^1$ or $xS^1 \subseteq (x+y)S^1$. **Case 1**. $(x+y)S^1 \subseteq xS^1$. Since $x+y \in (x+y)S^1$, $x+y = xs_2$ for some $s_2 \in S^1$. Thus $x+y \in xS$ and $y = xs_2 - x$. From (1), $x = ys_1 = (xs_2 - x)s_1 = xs_2s_1 - xs_1$ $= x(s_2s_1 - s_1) \in xS$. Since (xS, +) is a group, $y = (-x) + (x+y) \in xS$. Thus $yS^1 \subseteq xS^1$. By the condition (ii), we have x = y, a contradiction. **Case 2.** $xS^1 \subseteq (x+y)S^1$. Since $x \in xS^1 \subseteq (x+y)S^1$, $x = (x+y)s_3$ for some $s_3 \in S$. Thus

$$x \in (x+y)S. \tag{2}$$

By the condition(i), $(x+y)S^1 \subseteq yS^1$ or $yS^1 \subseteq (x+y)S^1$.

Subcase 2.1.
$$(x+y)S^1 \subseteq yS^1$$
. Since $x+y \in (x+y)S^1 \subseteq yS^1$, we have
 $x+y = ys_4$ for some $s_4 \in S$. (3)

Let $s_5 = -s_1 + s_4$. Then $s_5 \in S$. Now $ys_4s_5 = (x + y)s_5 \in (x + y)S$. By (2), we have that $xs_5 \in (x + y)S$. Since ((x + y)S, +) is a group and ys_4s_5 , $xs_5 \in (x + y)S$, we have $-(xs_5) + (ys_4s_5) \in (x + y)S$. By (3) and (1), we obtain that $y = -x + ys_4 = -(ys_1) + ys_4 = y(-s_1 + s_4) = ys_5 = (-x + ys_4)s_5$ $= -(xs_5) + (ys_4s_5) \in (x + y)S$.

Thus $yS^1 \subseteq ((x+y)S)S^1 \subseteq (x+y)S^1$. By the condition (ii), y = x+y so x = 0, a contradiction.

Subcase 2.2.
$$yS^1 \subseteq (x+y)S^1$$
.
Since $y \in yS^1 \subseteq (x+y)S^1$, $y = (x+y)s_6$ for some $s_6 \in S$.
Thus $y \in (x+y)S$. (4)

From (2) and (4) and ((x + y)S, +) is a group, we get that $x + y \in (x + y)S$. Thus $x + y = (x + y)s_7$ for some $s_7 \in S$. From (1), we have that

$$x + y = xs_7 + ys_7 = ys_1s_7 + ys_7 = y(s_1s_7 + s_7) \in yS.$$

Therefore $(x+y)S^1 \subseteq (yS)S^1 \subseteq yS^1$. By the condition (2), x+y=y so x=0, a contradiction. Therefore $|S| \le 2$.

Conversely, assume that $|S| \le 2$. If |S| = 1, then $S = \{0\}$ so we are done. Assume that |S| = 2. Let $S = \{0, x\}$. Then $x^2 = x$ or $x^2 = 0$, so $(S, \otimes) \cong (\mathbb{Z}_2, \cdot)$ where \otimes is the binary operation of *S* and \cdot is the usual multiplication of \mathbb{Z}_2 or *S* is a zero semigroup. Hence *S* admits a ring structure.

Corollary 4. Semigroups [0,1) and [0,1] under the usual multiplication do not admit a distributive near – ring structure.

Proof. Let $S \in \{[0,1), [0,1]\}$. Then $S^1 = [0,1]$. If for $x, y \in S$, then $x \le y$ or $y \le x$ and so $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. If for $x, y \in S$ and $xS^1 \subseteq yS^1$, then [0, x] = [0, y] so x = y. By Theorem 3, S does not admit a distributive near – ring structure.

Remark: Under the usual multiplication, we see that $[0,1) \cong (1,\infty)^0$ and $[0,1] \cong [1,\infty)^0$ by defining $f(x) = \frac{1}{x}$ for all $x \in (0,1)$ and f(0) = 0 and $g(x) = \frac{1}{x}$ for all $x \in (0,1]$ and g(0) = 0, respectively. By Corollary 4, $(1,\infty)$ and $[1,\infty)$ do not admit a distributive near – ring structure.

Theorem 5. Let S be a semigroup without zero. Assume that

- (i) for $x, y \in S, xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$ and
- (ii) for $x, y \in S, xS^1 = yS^1$ implies x = y.

Then S adimits a distributive near – ring structure if and only if |S| = 1.

Proof. Assume that *S* admits a distributive near – ring structure. Then there is an operation + on S^0 such that $(S^0, +, \cdot)$ is a distributive near – ring where \cdot is the given operation on S^0 . Suppose that |S| > 1. Let *x*, *y* be distinct elements in *S*. By (i), $xS^1 \subseteq yS^1$ or $yS^1 \subseteq xS^1$. We may assume that $xS^1 \subseteq yS^1$. By the same proof in Theorem 3, we have that $x = ys_1 \in yS$ and $(x+y)S^1 \subseteq xS^1$ or $xS^1 \subseteq (x+y)S^1$. **Case 1.** $(x+y)S^1 \subseteq xS^1$. Using the same proof as in Theorem 3 case 1, we have

that $(x+y) \in xS \subseteq xS^0$ and $x \in xS \subseteq xS^0$. Since $(xS^0, +)$ is a group, $y = -x + (x+y) \in xS^0$ which implies that $y \in xS$. Thus $yS^1 \subseteq xSS^1 \subseteq xS^1$. By (ii), x = y, a contradiction.

Case 2. $xS^1 \subseteq (x+y)S^1$. Using the same proof as in Theorem 3, we have $x \in (x+y)S$. By (i) $(x+y)S^1 \subseteq yS^1$ or $yS^1 \subseteq (x+y)S^1$.

Subcase 2.1. $(x+y)S^1 \subseteq yS^1$. Modify the proof of Theorem 3 in subcase 2.1 by using the fact that $(x+y)S \subseteq (x+y)S^0$ and $((x+y)S^0, +)$ is a group, we have that $yS^1 \subseteq (x+y)S^1$. By (ii), y = x+y so x = 0, a contradiction.

Subcase 2.2. $yS^1 \subseteq (x+y)S^1$. Modify the proof of Theorem 3 in subcase 2.2 by using the fact that $((x+y)S^0, +)$ is a group, we have that $(x+y)S^1 \subseteq yS^1$. By (ii), x + y = y so x = 0, a contradiction. Therefore |S| = 1.

The converse is obvious.

Corollary 6. Semigroups (0,1) and (0,1] under the usual multiplication do not admit a distributive near – ring structure.

Proof. It is similar to the proof of Corollary 4.

The last section, we give an example satisfying the condition (i) in Theorem 2.

Example. Let *R* be a ring with identity $1 \neq 0$ where 0 is the identity of the group *R* and let *n* be a positive integer greater than 1. For $i, j \in \{1, 2, ..., n\}$, let $E^{ij} = \left[\left(e^{ij} \right)_{st} \right]$ be a matrix in $M_n(R)$ defined by $\begin{pmatrix} 1 & \text{if } s = i \text{ and } t = j, \end{cases}$

$$\left(e^{ij}\right)_{st} = \begin{cases} 1 & \text{if } s = i \text{ and } t = j \\ 0 & \text{otherwise} \end{cases}$$

i.e.

$$E^{ij} = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} \leftarrow \text{row } i$$

column j

For $x \in R$,

$$xE^{ij} = \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & x & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} \leftarrow \text{row } i$$

column j

Let $S = \{xE^{ij} | x \in R \text{ and } i, j \in \{1, 2, 3, ..., n\}\}$. Then, clearly, (S, \cdot) is a semigroup under the usual multiplication of matrices.

For $i, j, s, t \in \{1, 2, ..., n\}$ and $x, y \in R$, $\begin{pmatrix} xE^{ij} \end{pmatrix} \begin{pmatrix} yE^{st} \end{pmatrix} = \begin{cases} xyE^{it} & \text{if } j = s, \\ 0 & \text{if } j \neq s. \end{cases}$

It is clear that the set of all nonzero-idempotents of *S* is $\{E^{ii} \mid i \in \{1, 2, ..., n\}\}$. Clearly, for $i, j \in \{1, 2, ..., n\}$ and $i \neq j, (E^{ii})(E^{jj}) = \overline{0}$ where $\overline{0}$ is the zero matrix in $M_n(R)$. By Theorem 2 (i), *S* does not admit a distributive near – ring structure.

CONCLUSION

Some conditions (in Theorem 3) for a semigroup with zero and without zero are investigated and showed that a semigroups with zero (without zero) satisfying this conditions belong to the class *SDN* if and only if $|S| \le 2(|S| = 1)$.

REFERENCES

- Chu, D.D. and Shyr, H.J. 1980. Monoids of Languages Admitting Ring Structure. Semigroup Forum 19, 127 – 132.
- Howie, J.M. 1976. An Introduction to Semigroup Theory. London: Academic Press.
- Kemprasit, Y. and Siripitukdet, M. 2002. Matrix Semigroups Admitting ring structure. *Bull. Cal. Math. Soc.* **94**, (5), 409-412.
- Lawson, L.J.M. 1969. *The Multiplicative Semigroup of a Ring*. Doctoral dissertation, University of Tennessee.

Peinado, R.E. 1970. On Semigroups Admitting Ring Structure. *Semigroup Forum*, 189 – 208.

Pilz, G. 1983. Near - rings, Netherland, North - Holland.

- Satyanarayana, M. 1981. On Semigroup Admitting Ring Structure IV. Semigroup Forum 23, 7-14.
- Siripitukdet, M. 2001. Semigroup Admitting skew ring or Skew Semifield structures. Doctoral dissertation, Chulalongkorn University.