ผลของอนุภาคระดับนาโนของเซอร์โคเนียมออกไซด์ต่อโครงสร้างจุลภาค ค่าความแข็ง แบบวิกเกอร์ และสมบัติใดอิเล็กทริกของเซรามิก PZT

้คชาภรณ์ แสนจุ้ม และ ชมพูนุช วรางคณากูล^{*}

Effect of zirconium oxide nanoparticles on microstructure, Vickers hardness and dielectric properties of PZT ceramics

Kachaporn Sanjoom and Chompoonuch Warangkanagool*

ภากวิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยนเรศวร จังหวัดพิษณุโลก 65000 Correspondingauthor. E-mail: chompoonuchp@nu.ac.th

บทคัดย่อ

งานวิจัชนี้ ได้ศึกษาผลของผงเซอร์โคเนียมออกไซด์ (ZrO₂) ในระดับนาโนที่มีต่อโครงสร้าง จุลภาค ก่าความแข็งแบบวิกเกอร์ และสมบัติใดอิเล็กทริกของเซรามิกเลดเซอร์โคเนตไททาเนต (PbZr_{0.52}Ti_{0.48}O₃: PZT) จากการวิเคราะห์ผงผลึก PZT ที่เผาแคลไซน์ที่อุณหภูมิต่างๆ กัน ด้วยเทคนิค การเลี้ยวเบนของรังสีเอกซ์พบเงื่อนไขที่เหมาะสมในการเผาแคลไซน์ที่อุณหภูมิ 800 °C นาน 2 ชั่วโมง เมื่อเติมผงเซอร์โคเนียมออกไซค์ในระดับนาโนลงในผงผลึก PZT ที่เผาแคลไซน์เกื่อุณหภูมิ 800 °C นาน 2 ชั่วโมง เมื่อเติมผงเซอร์โคเนียมออกไซค์ในระดับนาโนลงในผงผลึก PZT ที่เผาแคลไซน์แล้วในสัดส่วนโดย ปริมาตรร้อยละ 0 ถึง 2 เผาซินเตอร์ที่อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง ตรวจสอบโครงสร้างจุลภาค ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคหาขนาดของเกรนเฉลี่ยโดยวิธีจุดตัดบนเส้นตรง ทดสอบค่าความแข็งด้วยเทคนิคการวิเคราะห์ความแข็งแบบวิกเกอร์ สมบัติไดอิเล็กทริกทำการวัดด้วย เครื่อง LCR ที่ความถี่ 1 kHz พบว่าเซรามิก PZT ที่เติมสารเจือในระดับนาโนของ ZrO₂มีขนาดของ เกรนลคลง มีค่าความแข็งสูงขึ้นตามปริมาณของสารเจือ ZrO₂ แต่ค่าคงที่ไดอิเล็กทริกและค่าการ สูญเสียความร้อนทางไดอิเล็กทริกมีค่าลดลง

กำสำคัญ: อนุภาคระดับนาโนของเซอร์โลเนียมออกไซด์ เซรามิกเลดเซอร์โลเนตไททาเนต ความแข็งแบบวิกเกอร์ สมบัติไดอิเล็กทริก

Abstract

In this research, the effect of zirconium oxide (ZrO_2) nanoparticles on microstructure, Vickers hardness and dielectric properties of lead zirconate titanate $(PbZr_{0.52}Ti_{0.48}O_3: PZT)$ ceramics were investigated. The optimum calcinations temperature of PZT powders was found at 800 °C for 2 h according to result of X-ray diffraction. The ZrO_2 nanoparticles were blended with the calcined PZT powder in ratios of between 0 and 2 vol% and sinter at 1200 °C for 2 h. Microstructure was examined by Scanning Electron Microscope (SEM). Vickers hardness was determined using a Vickers indentation technique. The dielectric properties were verified by LCR meter at 1 kHz. It was found that, the addition of ZrO_2 nanoparticles could significantly reduce the average grain size of PZT ceramics. The Vickers hardness of the composites tended to improve with the addition of the ZrO_2 nanoparticles but the dielectric constant and dielectric loss tend to decreased.

Keywords: ZrO2 nanoparticles, PZT ceramics, Vickers hardness, dielectric properties

บทนำ

เลดเซอร์ โกเนต ไททาเนต (PZT) เป็นวัสดุที่ถูกนำมาใช้อย่างกว้างขว้าง เช่น แอกทูเอเตอร์ (actuators) เกรื่องสะท้อนเสียง (resonators) เครื่องตรวจจับ (sensors) ไมโกร โฟน (microphone) และ ตัวเก็บประจุ (capacitors) เป็นค้น เนื่องจาก PZT มีสมบัติเพียโซอิเล็กทริกที่ดีเยี่ยม มีโครงสร้างแบบ เพอร์รอฟส ไกต์ (perovskite) เป็นสารประกอบที่เกิดจากสารเลดเซอร์ โคเนต (PbZrO₃) แสดงสมบัติ เป็นแอนติเฟร์ โรอิเล็กทริก (antiferroelectric) ซึ่งมีโครงสร้างเป็นแบบออทอรอมบิก (orthorhombic) กับสารเลด ไททาเนต (PbTiO₃) ซึ่งแสดงสมบัติเป็นเตตระ โกนอล (tetragonal) สมบัติทางด้านไฟฟ้า ของเลดเซอร์ โคเนต ไททาเนต (PbTiO₃) ซึ่งแสดงสมบัติที่โดดเด่นมากในสัดส่วนของ Zr:Ti อยู่ที่ 52:48 หรือ 53:47 ซึ่งอยู่ ฉ บริเวฉที่เรียกว่ารอยต่อเฟสที่มีสัณฐานเหมือนกัน (morphotropic phase boundaries: MPB) (Han *et al.*, 2000) สาร PZT ให้ก่าสัมประสิทธิ์เพียโซอิเล็กทริก (piezoelectric coefficient; d₃₃) และก่าสภาพขอมสัมพัทธ์หรือก่าคงที่ไดอิเล็กทริก (relative permittivityor dielectric constant; E₁) ที่สูง มีอุณหภูมิกูรีอยู่ที่ 390 °C ทำให้สามารถใช้งานได้ดีที่อุณหภูมิสูง (Moulson and Herbert, 2003; Haertling, 1999) แต่เซรามิกเพียโซอิเล็กทริกที่เป็น PZT มีความทนทานต่อรอยแตกหัก และความ เหนียวน้อยทำให้อายุการใช้งานของเซรามิกลดลง ดังนั้นในงานวิจัขนี้จึงหาวิธีเพิ่มค่าความแข็งให้กับเซรามิก PZT เพื่อยืดอายุการใช้งานวัสดุที่ ทำจากเซรามิกนี้ โดยเลือกการเติมสารเจือของ ZrO₂ที่มีอนุภาคระดับนาโนเข้าไปในเซรามิก PZT (Tajima et al., 1999) ในปริมาณต่างๆ กัน โดยมุ่งหวังให้มีการพัฒนาค่าความแข็งสูงขึ้น ขณะที่ค่าทาง ไฟฟ้าอย่างค่าคงที่ไดอิเล็กทริกจะไม่ลดลงมากนัก และยังคงมีค่าการสูญเสียความร้อนเนื่องจาก ไดอิเล็กทริกต่ำอยู่ โดยใช้วิธีการเตรียมแบบมิกซ์ออกไซค์แบบดั้งเดิม (Buchanan, 1986) ซึ่งเป็นวิธีการ หนึ่งที่มีค่าใช้จ่ายไม่สูงมากนัก เมื่อเทียบกับวิธีอื่นๆ จึงทำให้เป็นที่นิยมใช้กันมาจนถึงปัจจุบัน

ระเบียบวิธีการวิจัย

ในการทดลองนี้ได้เตรียมเซรามิกเลดเซอร์โกเนตไททาเนต (PbZr_{0.52}Ti_{0.48}O₃: PZT) โดยใช้ สารตั้งต้นเลคออกไซค์ (PbO) เซอร์ โคเนียมไคออกไซค์ (ZrO,) และไททาเนียมไคออกไซค์ (TiO,) ทำ การบคผสมเปียกโดยใช้ลูกบคเซอร์โกเนียเป็นตัวบค และใช้เอทานอลเป็นตัวช่วยกระจายตัวของ ้อนภาก เป็นเวลา 24 ชั่วโมง จากนั้นนำสารผสมที่บุคละเอียดแล้วมาทำให้แห้งแล้วคัดขนาดโดยการ ร่อนผ่านตะแกง นำผงผสมที่ได้ทำการเผาแคลไซน์ด้วยเตาไฟฟ้า ผลิตโดยบริษัท Lenton Furnances รุ่น 4279 ที่อุณหภูมิ 500-900°C เป็นเวลา 2 ชั่วโมง ด้วยอัตราการให้ความร้อน 5 °C/นาที วิเคราะห์การ ก่อเกิดเฟสโดยใช้เครื่องตรวจสอบการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction: XRD) รุ่น X'Pert ้ผลิตโดยบริษัท Philips ประเทศเนเธอร์แลนด์เพื่อหาอุณหภูมิที่เหมาะสมในการเผาแคลไซน์ นำผงผลึก PZT ที่เผาแกลไซน์แล้วมาผสมกับสารเงือ ZrO, ที่มีอนุภาคในระดับนาโน ในปริมาณร้อยละโดย ปริมาตรเป็น 0.5, 1 และ 2 (หรือเขียนแทนเป็น PZT + 0.5, 1, 2 vol.%ZrO₂) และผสมกับโพลิไวนิล แอลกอฮอล์ (Polyvinyl alcohol: PVA) ซึ่งเป็นสารยึคเหนี่ยวในปริมาณร้อยละ 1 โดยน้ำหนัก นำไปอัด ขึ้นรูปให้เป็นทรงกระบอกที่มีขนาคเส้นผ่านศูนย์กลางประมาณ 10 mm และหนาประมาณ 1.5 mm โดยใช้เกรื่องอัคระบบไฮโครลิก (SPACAC) ด้วยความคันขนาด 40 MPa เป็นเวลานาน 25 - 30 วินาที แล้วเผาซินเตอร์ ณ อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง วิเคราะห์การก่อเกิดเฟสอีกครั้งด้วยเครื่อง XRD ตรวจสอบโครงสร้างจุลภาคด้วยเครื่อง SEM รุ่น LEO-1455VP จากประเทศอังกฤษคำนวณหา ้งนาดของเกรนเฉลี่ยด้วยวิธีจุดตัดบนเส้นตรง ทดสอบก่ากวามแข็งแบบวิกเกอร์ โดยใช้เกรื่องวัดก่า ้ความแข็งในระดับจุลภาค โดยการนำเซรามิกที่ต้องการทดสอบมาขัดผิวหน้าให้มันวาวเป็นกระจก กด ้ด้วยโหลดขนาด 300 กรัม เป็นเวลา 15 วินาที ทั่วผิวหน้าของสารตัวอย่าง นำมาหาค่าความแข็งแบบ วิกเกอร์ในหน่วย GPa ตามสมการที่ (1) (Instructure Manual, Matsuzawa Seiki Co.,LTD.) แล้วนำมา หาค่าเฉลี่ย

$$H_{v} = (1854.4) \frac{P}{d^{2}}$$
(1)

เมื่อ H_v คือ ค่าความแข็งในหน่วยของวิกเกอร์ (GPa)

- P คือ โหลดที่ให้แก่หัวกด (N)
- d คือ ค่าความยาวเฉลี่ยของเส้นทแยงมุมของรอยกด (μm)

สำหรับสมบัติใดอิเล็กทริกนั้น ทำการวัดโดยนำเซรามิกที่ผ่านการเผาซินเตอร์แล้วมาขัด ผิวหน้าให้เรียบและทำขั้วไฟฟ้าด้วยกาวเงิน มาวัดก่ากวามจุไฟฟ้า และก่าการสูญเสียกวามร้อนทาง ใดอิเล็กทริกของเซรามิก ด้วยเกรื่อง LCR (Precision LCR meter) รุ่น E 4980 A, 20 Hz – 2 MHz บริษัท Agilent ประเทศญี่ปุ่นที่กวามถี่ 1 kHz ณ อุณหภูมิห้อง เพื่อกำนวณหาก่ากงที่ใดอิเล็กทริกตาม สมการ (2)

$$\varepsilon_{r} = \frac{tC}{\varepsilon_{0}A}$$
(2)

โดยที่ **E**เป็นค่าคงที่ไดอิเล็กทริกของชิ้นงาน

 ${f \epsilon}_0$ เป็นค่าคงที่ใดอิเล็กทริกของสุญญากาศมีค่าประมาณ 8.854 imes 10⁻¹⁵ F/mm

C เป็นก่ากวามจุไฟฟ้า, t เป็นกวามหนาของชิ้นงาน และ A เป็นพื้นที่หน้าตัดของชิ้นงาน

ผลการทดลองและการอภิปรายผล

รูป 1 รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของผง PZT ที่ยังไม่เผาแกลไซน์ และผงผลึก PZT ที่เผา แกลไซน์ ณ อุณหภูมิ 500-900 °C นาน 2 ชั่วโมง

จากรูป 1 เป็นการเปรียบเทียบรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของผง PZT ที่ยังไม่เผา แกลไซน์ และผงผลึก PZT ที่เผาแกลไซน์ ณ อุณหภูมิ 500-900 °C นาน 2 ชั่วโมง พบว่าผงผลึก PZT ที่เผาแกลไซน์ ณ อุณหภูมิ 800 °C และ 900 °C มีรูปแบบการเลี้ยวเบนของรังสีเอกซ์สอดกล้องกับ ข้อมูลมาตรฐาน PZT ในฐานข้อมูล 33-0784 (Powder Diffraction File, 2000) ส่วนผงผลึกที่เผา แกลไซน์ ณ อุณหภูมิต่ำกว่า 800 °C นั้น การฟอร์มตัวเป็นผงผลึก PZT ยังไม่สมบูรณ์ จึงยังมีเฟส แปลกปลอม และเฟสของสารตั้งต้นอยู่ ดังนั้นจึงเลือกอุณหภูมิที่เหมาะสมในการเผาแกลไซน์ที่ อุณหภูมิ 800 °C

ร**ูป 2** รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก PZT + (0-2) vol.% ZrO₂ เผาซินเตอร์ที่อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง

จากรูป 2 จะเห็นว่ารูปแบบการเลี้ยวเบนของรังสีเอกซ์ของเซรามิก PZT ทั้งที่ไม่เติมสารเจือ ในระดับนาโน ZrO₂ และที่เติมสารเจือนี้ในปริมาณ 0.5, 1 และ 2 vol.% ให้รูปแบบเช่นเดียวกัน ยังคง สอดคล้องกับข้อมูลมาตรฐานของ PZT ในฐานข้อมูลหมายเลข 33-0784 (Powder Diffraction File, 2000) และไม่พบเฟสของ ZrO₂ ทั้งนี้เนื่องจากปริมาณของสารเจือ ZrO₂ นั้นน้อยเกินกว่าที่เครื่อง XRD จะตรวจสอบได้ เช่นเดียวกับผงผลึก PZT เป็นผลการวิเคราะห์สารด้วยการเลี้ยวเบนของรังสีเอกซ์ของ เซรามิก PZT ที่ไม่เติมสารเจือแต่เมื่อนำเซรามิก PZT + (0-2) vol.% ZrO₂ ที่เผาซินเตอร์ได้ทั้งหมดมา ตรวจสอบลักษณะสัณฐานวิทยาด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดพบว่าขนาดเกรนเลิ่ย ของเซรามิก PZT ที่เดิมสารเจือนี้ในปริมาณเพียงเล็กน้อยกีทำให้มีขนาดของเกรนเล็กลงอย่างเห็นได้ ชัดดังรูป 3 ซึ่งเป็นภาพถ่าย SEM บริเวณผิวหน้าของเซรามิก PZT + (0-2) vol.% ZrO₂โดยขนาดของ เกรนเฉลี่ยจะลดลงจากประมาณ 3 μm เหลือประมาณ 1.5 μm ดังกราฟความสัมพันธ์ระหว่างขนาด ของเกรนเฉลี่ยกับปริมาณสารเจือ ZrO₂ ที่เติมลงในเซรามิก PZT ในรูป 4 จึงได้ว่าสารเจือในระดับ นาโนของ ZrO₂ นั้น ไปทำการยับยั้งหรือขัดขวางการเติบโตของเกรนของในเซรามิก PZT นั่นเอง สอดคล้องกับผลงานวิจัยของกลุ่ม Tajima และกลุ่มของ Puchmark (Tajima *et al.*, 2000; Puchmark *et al.*, 2006) ซึ่งทั้งสองกลุ่มได้ศึกษาการเติมสารเจือในระดับนาโนของ Al₂O₃ ลงในเซรามิก PZT แล้ว ทำให้ขนาดของเกรนเฉลี่ยของเซรามิก PZT มีการลดลงเช่นกัน

ร**ูป 3** ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคที่บริเวณผิวหน้าของเซรามิก PZT ที่เติม สารเจือในระดับนาโน ZrO₂ในปริมาณต่างๆ กัน เผาซินเตอร์ที่อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง: (ก) PZT ไม่เติมสารเจือ, (ข) PZT+0.5 vol.% ZrO₂, (ค) PZT+1 vol.% ZrO₂ และ (ง) PZT+2 vol.% ZrO₂

รูป 4 ขนาดเกรนเฉลี่ยของเซรามิก PZT + (0-2) vol.% ZrO₂ เผาซินเตอร์ ณ อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง

ร**ูป 5** ความแข็งแบบวิกเกอร์ของเซรามิก PZT + (0-2) vol.% ZrO₂ เผาซินเตอร์ ณ อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง

เมื่อนำเซรามิก PZT ที่เติมสารเจือระดับนาโนของ ZrO₂ในปริมาณต่างๆ กัน มาหาค่าความ แข้งแบบวิกเกอร์ พบว่าค่าความแข็งของเซรามิก PZT นี้ มีแนวโน้มเพิ่มขึ้นตามปริมาณสารเจือ ZrO₂ ดังรูป 5 ที่เป็นเช่นนี้เนื่องมาจาก สารเจือ ZrO₂ มีสมบัติความแข็งที่ดี เมื่อเทียบกับขนาดของเกรนเฉลี่ย พบว่าขนาดของเกรนเฉลี่ยเล็กลงในขณะที่ก่าความแข็งเพิ่มขึ้น ความสัมพันธ์นี้อธิบายได้ว่า ขนาด เกรนที่เล็กลงส่งผลให้มีจำนวนขอบเกรนมากขึ้น ซึ่งขอบเกรนจะทำหน้าที่ขัดขวางการเคลื่อนที่ของ การเปลี่ยนตำแหน่ง (dislocation) ถ้าหากในผลึกมีทิสทางที่ต่างกันมาก จะทำให้ขอบเกรนมี ความสามารถในการขวางการเคลื่อนที่ของรอยแตกได้ดี ส่งผลให้เซรามิกมีความแข็งมากขึ้น (Meyers and Chawla, 1999)

รูป 6 ค่าคงที่ไดอิเล็กทริก และค่าการสูญเสียความร้อนเนื่องจากไดอิเล็กทริกของเซรามิก PZT ที่เติม สารเจือในปริมาณต่างๆ เผาซินเตอร์ที่อุณหภูมิ 1200 °C เป็นเวลา 2 ชั่วโมง

วัดสมบัติไดอิเล็กทริก โดยการวัดก่าความจุไฟฟ้าของเซรามิก PZT ที่เติมสารเจือ ZrO₂ใน ปริมาณต่างๆ กัน ที่ความถี่ 1 kHz ณ อุณหภูมิห้อง แล้วนำมาคำนวณเป็นก่าคงที่ไดอิเล็กทริก ดังสมการ (2) และวัดก่าการสูญเสียความร้อนเนื่องจากไดอิเล็กทริกของเซรามิกในกราวเดียวกัน นำมาเขียนกราฟ ตามรูป 6 ซึ่งพบว่าเมื่อเดิมสารเจือ ZrO₂ ลงในเซรามิกเพียง 0.5 และ 1 vol.% ทำให้ก่าคงที่ไดอิเล็กทริก ของเซรามิก PZT ลดลงประมาณ 4.7% และก่าการสูญเสียความร้อนเนื่องจากไดอิเล็กทริกลดลงอย่าง มากถึง 40% เมื่อเทียบกับเซรามิกที่ไม่เติมสารเจือ แต่เมื่อปริมาณของสารเจือ ZrO₂ในเซรามิก PZT เพิ่มขึ้นเป็น 2 vol.% ก่าคงที่ไดอิเล็กทริกที่ได้ลดลงไปมาก ก่าการสูญเสียความร้อนทางไดอิเล็กทริก กลับเพิ่มมาก

สรุปผลการทดลอง

จากผลของการเติมสารเจือในระดับนาโนของ ZrO₂ ลงในเซรามิก PZT นี้ จะพบว่าเมื่อเติม สารเจือ ZrO₂ในปริมาณน้อยๆ เพียง 0.5 ถึง 1 vol.% ทำให้โครงสร้างจุลภาคของเซรามิก PZT เปลี่ยนแปลงขนาดของเกรนให้เล็กลง และเพิ่มค่าความแข็งได้ดีขึ้น ขณะเดียวกันค่าการสูญเสียความ ร้อนทางใดอิเล็กทริกก็ลดลง ถึงแม้ว่าค่าคงที่ใดอิเล็กทริกจะลดลงตามแต่ลดลงไม่เกิน 5% แต่เมื่อเพิ่ม ปริมาณสารเจือเป็น 2 vol.% จะทำให้เซรามิก PZT มีค่าความแข็งเพิ่มขึ้นอีกเล็กน้อย แต่ค่าคงที่ ใดอิเล็กทริกลดลงมาก ส่วนค่าการสูญเสียความร้อนทางใดอิเล็กทริกกลับเพิ่มขึ้น ดังนั้นปริมาณ สารเจือในระดับนาโนของ ZrO₂ ที่เหมาะสมสำหรับเซรามิก PZT นี้ จึงไม่เกิน 1 vol.%

กิตติกรรมประกาศ

งานวิจัขนี้ได้รับทุนอุดหนุนการวิจัขจากมหาวิทขาลัขนเรศวร งบประมาณแผ่นดิน ปีงบประมาณ 2554 ได้รับความสะดวกในการใช้เครื่องมือทดการทดลอง ณ ภาควิชาฟิสิกส์ คณะ วิทยาศาสตร์ มหาวิทขาลัขนเรศวร และผู้วิจัยขอกราบขอบพระคุณศาสตราจารย์เกียรติคุณ ดร.ทวี ตันฆศิริ และศาสตราจารย์ ดร.กอบวุฒิ รุจิจนากุล ที่อำนวยความสะดวกในการใช้เครื่องมือวัด ใน ห้องปฏิบัติการอิเล็กโทรเซรามิก ภาควิชาฟิสิกส์และวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

เอกสารอ้างอิง

- Buchanan, R.C. (1986). Ceramic Materials for Electronics: Processing, Properties and Applications, (1st ed.), New York: Marcel Dekker, Inc.
- Haertling, G.H. (1999). Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc., 82, 797-818.
- Han, K.R., Koo, H.J., Hong, M.J. and Lim, C.S. (2000). Simple synthesis of submicrometer lead titanate powder by precipitation of TiO₂ precusor on PbO particulates. J. Am. Ceram. Soc., 83, 971-973.
- Instructure Manual, Microhardness Tester MXT- α3, MXT- α7, MXT- α3e, MXT- α7e, Matsuzawa Seiki Co., LTD.
- Meyers, M.A. and Chawla, K.K. (1999). *Mechanical Behaviors of Materials*, Prentice-Hall International, Inc.

- Moulson, A.J. and Herbert, J.M. (2003). *Electroceramics: Material, Properties and Applications,* (2nd ed.), Chapman & Hall, London.
- Powder Diffraction File, Card No. 33-0784. Joint Committee for Powder Diffraction Standards (JCPDS) PDF-4. (2000). International Centre for Diffraction Data (ICDD).
- Puchmark, C., Rujijanagul, G., Jiansirisomboon, S., Tunkasiri, T., Vittayakorn, N., Comyn, T. and Milne, S.J. (2006). Mechanical property evaluation of PZT/Al₂O₃ composites preparedby a simple solid-state mixed oxide method. *Curr. Appl. Phys.*, 6, 323–326.
- Tajima, K., Hwang, H.J., Sando, M. and Niihara, K. (1999). PZT nanocomposites reinforced by small amount of oxides. J. Eur. Ceram. Soc., 19, 1179-1182.
- Tajima, K., Hwang, H.J., Sando, M. and Niihara, K. (2000). Electric-Field-Induced Crack Growth Behavior in PZT/Al₂O₃ Composites. J. Am. Ceram. Soc., 83, 651-653.