The perfect matching or the near-perfect matching of the union of a Kneser graph and a Johnson graph

Patcharapan Jumnongnit and Kittikorn Nakprasit
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002.
*Corresponding author. Email: patcha_7429@hotmail.com

Abstract

The union of a Kneser graph and a Johnson graph, denoted by $L(n, k)$, has the k-element subsets of an n-element set as vertices for $n \in \mathrm{~N}$ and $k \in \mathrm{~N}$, with two vertices are adjacent if the sets are disjoint or their intersection has size $k-1$. We show that $L(n, k)$ has a perfect matching or a near-perfect matching for all n and k. Particularly, we find its matching number and edge cover number.

Keywords: Kneser graph, Johnson graph, Perfect-Matching, Near-perfect-matching, Edge cover number

INTRODUCTION

The Kneser graph $K(n, k)$ is the graph whose vertices correspond to the k element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. In (Etzion and Bitan, 1996) defined the Johnson graph $J(n, k)$ to be the graph whose the vertex set $V(J(n, k))$ equals V $(K(n, k))$, and two k-element subsets are adjacent if and only if their intersection has size $k-1$. Moreover, they studied on the chromatic number, coloring and code of the Johnson graph. In (Kim and Nakprasit, 2004) studied chromatic numbers and independent numbers of $\left(K^{2}(2 k+1, k)\right)$. Next, (Yonsomeng, 2009) defined the union of a Kneser graph and a Johnson graph $L(n, k)$ has $V(L(n, k))$ equals $V(K(n, k))$. In $L(n, k)$, the distinct vertices u and v are adjacent in $L(n, k)$ if and only if $u \cap v=\emptyset$ or $|u \cap v|=k-1$. In fact, $K^{2}(2 k+1, k) \cong L(2 k+1, k)$. Moreover, she studied clique numbers of $L(n, k)$ for $k \geq 3$. In this paper, we study about $L(n, k)$ has a perfect matching or a near-perfect matching for all n and k and we find its matching number and edge cover number.

The perfect matching or the near-perfect matching of $L(n, k)$ for each n and k

Definition 1. The Union of a Kneser graph and a Johnson graph denoted by $L(n, k)$ is the graph whose vertices are the k-element subsets of an n-element set, two vertices A and B are adjacent if and only if $A \cap B=\emptyset$ or $|A \cap B|=k-1$.

Proposition 1. $\binom{n}{2}$ is even if and only if $n \equiv 0 \operatorname{or} 1(\bmod 4)$.
Proof. (\Rightarrow) Assume $\binom{n}{2}$ is even.

$$
\binom{n}{2}=\frac{n(n-1)}{2}=2 t \text { for some integer } t
$$

Since $n(n-1)=4 t$, we have $4 \mid n$ or $4 \mid(n-1)$ or $2 \mid n$ and $2 \mid(n-1)$. So we have that $4 \mid n$ or $4 \mid(n-1)$ because n and $n-1$ are relatively prime.
Hence $n \equiv 0$ or $1(\bmod 4)$.
(\Leftarrow) Assume $n \equiv 0$ or $1(\bmod 4)$.
That is $4 \mid n$ or $4 \mid(n-1)$.
If $4 \mid n$, we have $n=4 t_{1}$ for some integer t_{1}. Then

$$
\begin{aligned}
\binom{n}{2} & =\frac{n(n-1)}{2} \\
& =\frac{4 t_{1}(n-1)}{2} \\
& =2\left(t_{1}(n-1)\right) .
\end{aligned}
$$

Thus $\binom{n}{2}$ is even.
If $4 \mid(n-1)$, we have $n-1=4 t_{2}$ for some integer t_{2}. Then

$$
\begin{aligned}
\binom{n}{2} & =\frac{n(n-1)}{2} \\
& =\frac{n\left(4 t_{2}\right)}{2} \\
& =2\left(n t_{2}\right) .
\end{aligned}
$$

Thus $\binom{n}{2}$ is even. Therefore $\binom{n}{2}$ is even if and only if $n \equiv 0$ or $1(\bmod 4)$.

Proposition 2. If $n \equiv 0$ or $1(\bmod 4)$, then $L(n, 2)$ has a perfect matching. Otherwise $L(n, 2)$ has a near-perfect matching.

Proof. Suppose $n \equiv 0$ or $1(\bmod 4)$. By Proposition 1, we have $L(n, 2)$ is an even complete graph. Thus $L(n, 2)$ has a perfect matching, otherwise $L(n, 2)$ is an odd complete graph, $L(n, 2)$ has a near-perfect matching.

Proposition 3. $J(n-2)$ has a perfect matching or a near-perfect matching.
Proof. Case 1. $n=2 k$. We define a matching M as follows.
Let an edge joining $\{i, 2 j\}$ and $\{i, 2 j+1\}$ be in a matching M for each $i<2 j ; i=1$, $2, \ldots, 2 k-1$ and $j=1,2, \ldots, k-1$ when i is odd.
Let an edge joining $\{I, 2 j+1\}$ and $\{I, 2 j+2\}$ be in a matching M for each $i<2 j+1$ $; i=1,2, \ldots, 2 k$ and $j=1,2, \ldots, k-1$ when i is even.
The vertices that are not matched in M always have n as an element. So they induce a complete graph K_{k}. Thus we can find M^{\prime} that is a perfect matching or a near-perfect matching in K_{k}. Thus $M \cap M^{\prime}$ is a perfect matching or a near-perfect matching.

Case 2. $n=2 k+1$. We can find a perfect matching or a near-perfect matching by a method similar to above case.

Corollary 1. $L(n, 2)$ has a perfect matching or a near-perfect matching.

Proposition 4. $\binom{n}{3}$ is even if and only if n is even or $n \equiv 1(\bmod 4)$ for $n \geq 4$.

Proposition 5. $J(n, 3)$ has a perfect matching or a near-perfect matching.

Proof. We prove by induction on n.
Base Case. It is straightforward to show that $J(3,3)$ has a near-perfect matching and $J(4,3)$ has a perfect matching.
Induction step. Let $n \geq 5$.
Consider $J(n, 3)$. Let

$$
\begin{array}{l|l}
A=\{v \in V(J(n, 3)) & n \Subset v\} \\
B=\{v \in V(J(n, 3)) & n \in v\} .
\end{array}
$$

So $[V(A)] \cong J(n-1,3)$ and $[V(B)] \cong J(n-1,2)$. By induction hypothesis, $[V(A)]$ has a perfect matching or a near-perfect matching, say M_{1}.
By Lemma 3, $[V(B)$] has a perfect matching or a near-perfect matching, say M_{2}. Then $M_{1} \cup M_{2}$ is a matching in $J(n, 3)$.

Case 1. M_{1} is a perfect matching in $[V(A)]$ and M_{2} is a perfect matching in $[V(B)]$. Thus $M_{1} \cup M_{2}$ is a perfect matching in $J(n, 3)$.

Case 2. M_{1} is a perfect matching in $[V(A)]$ and M_{2} is a near-perfect matching in [$V(B)$].
Thus $M_{1} \| M_{2}$ is a near-perfect matching in $J(n, 3)$.
Case 3. M_{1} is a near-perfect matching in $[V(A)]$ and M_{2} is a perfect matching in [$V(B)$].
Thus $M_{1} U M_{2}$ is a near-perfect matching in $J(n, 3)$.
Case 4. Without loss of generality, M_{1} is a near-perfect matching in $[V(A)]$ that does not contain $\{1,2,3\}$ and M_{2} is a near-perfect matching in $[V(B)]$ that does not contain $\{1 ; 2 ; n\}$. Let e be an edge incident to $\{1,2,3\}$ and $\{1,2, n\}$. Then $M_{1} \cup M_{2} \cup\{e\}$ is a perfect matching in $J(n, 3)$

Proposition 6. Let $n \geq 4$. If n is even or $n \equiv 1(\bmod 4)$, then $L(n, 3)$ has a perfect matching. Otherwise $L(n, 3)$ has a near-perfect matching.

Proof. It follows from Proposition 4 and 5.

Corollary 2. $L(n, 3)$ has a perfect matching or a near-perfect matching.
Theorem 1. $J(n, k)$ has a perfect matching or a near-perfect matching.
Proof. We prove by induction on n.
Base Case. $J(n, 1)$ and $J(k, k)$ are complete graphs, each of them has a perfect matching or has a near-perfect matching.
Induction step.
Consider $J(n, k)$. Let

$$
\begin{array}{l|l}
A=\{v \in V(J(n, k)) & n \uplus v\} \\
B=\{v \in V(J(n, k)) & n \in v\} .
\end{array}
$$

So $[V(A)] \cong J(n-1, k)$ and $[V(B)] \cong J(n-1, k-1)$. By induction hypothesis, [$V(A)$] has
a perfect matching or a near-perfect matching, say M_{1}.
[$V(B)$] has a perfect matching or a near-perfect matching, say M_{2}. Then $M_{1} \cup M_{2}$ is a matching in $J(n, k)$.

Case 1. M_{1} is a perfect matching in $[V(A)]$ and M_{2} is a perfect matching in $[V(B)]$. Thus $M_{1} \cup M_{2}$ is a perfect matching in $J(n, k)$.

Case 2. M_{1} is a perfect matching in $[V(A)]$ and M_{2} is a near-perfect matching in [$V(B)$].
Thus $M_{1} \cup M_{2}$ is a near-perfect matching in $J(n, k)$.
Case 3. M_{1} is a near-perfect matching in $[V(A)]$ and M_{2} is a perfect matching in [$V(B)$].
Thus $M_{1} \cup M_{2}$ is a near-perfect matching in $J(n, k)$.
Case 4. Without loss of generality, M_{1} is a near-perfect matching in $[V(A)]$ that does not contain $\{1,2, \ldots, k\}$ and M_{2} is a near-perfect matching in $[V(B)]$ that does not contain $\{1,2, \ldots, k-1, n\}$. Let e be an edge incident to $\{1,2, \ldots, k\}$ and $\{1,2, \ldots, k-$ $1, n\}$.

Then $M_{1} \cup M_{2} \cup\{e\}$ is a perfect matching in $J(n, k)$.

Corollary 3. $L(n, k)$ has a perfect matching or a near-perfect matching.
Proposition 7. Let $n \geq 8 .\binom{n}{4}$ is even if and only if $n=8 t, 8 t+1,8 t+2$, or $8 t+3$.

Proposition 8. $L(n, 4)$ has a perfect matching if and only if $n=8 t, 8 t+1,8 t+2$, or $8 t+3$.Otherwise $L(n, 4)$ has a near-perfect matching.

REFERENCES

Etzion, T. and Bitan, S. (1996). On the chromatic number, colorings and codes of the Johnson graph. Discrete Applied Mathematics, 70, 163-175.
Kim, S.J. and Nakprasit, K. (2004). On the chromatic number of the square of the Kneser graph $K(2 k+1 ; k)$. Graphs and Combinatorics, 20(1), 79-90.
Yonsomeang, Y. (2009). On the structure of the union of a Kneser graph and a Johnson graph. Thesis, Khon Kaen University.

