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ABSTRACT. In this paper, we present and analyze a cholera
epidemiological model with control measures incorporated. This
model is extended from the one proposed in [16] by including
the effects of vaccination, therapeutic treatment, and water san-
itation. Equilibrium analysis is conducted in the case with con-
stant controls for both epidemic and endemic dynamics. Opti-
mal control theory is applied to seek cost-effective solution of
multiple time-dependent intervention strategies against cholera
outbreaks.

1 Introduction Cholera is an acute intestinal infectious disease
caused by the bacterium Vibrio cholerae. Recent cholera outbreaks in
Haiti (2010–2011), Nigeria (2010), Kenya (2010), Vietnam (2009), Zim-
babwe (2008–2009), etc., continue leading to a large number of infections
and receiving worldwide attention [5, 26].

The dynamics of cholera involve multiple interactions between the hu-
man host, the pathogen, and the environment [18], which contribute to
both direct human-to-human and indirect environment-to-human trans-
mission pathways. In an effort to gain deeper understanding of the
complex dynamics of cholera, several mathematical models have been
published. For example, Codeço in 2001 proposed a model [6] that ex-
plicitly accounted for the environmental component, i.e., the V. cholerae
concentration in the water supply, into a regular SIR epidemiological
model. The incidence (or, the infection force) was modeled by a logistic
function to represent the saturation effect. Hartley, Morris and Smith
[9] in 2006 extended Codeço’s work to include a hyperinfectious state
of the pathogen, representing the “explosive” infectivity of freshly shed
V. cholerae, based on the laboratory observations [1, 15]. This model
was rigorously analyzed in [14]. Joh, Wang, Weiss et al. [11] in 2009
Modified Codeço’s model by a threshold pathogen density for infection,
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with a careful discussion on human-environment contact and in-reservoir
pathogen dynamics. More recently, Mukandavire et al. [16] proposed a
model to study the 2008–2009 cholera outbreak in Zimbabwe. The model
explicitly considered both human-to-human and environment-to-human
transmission pathways. The results in this work demonstrated the im-
portance of the human-to-human transmission in cholera epidemics, es-
pecially in such places as Zimbabwe, a land-locked country in the middle
of Africa. Moreover, Tien and Earn [24] in 2010 published a water-borne
disease model which also included the dual transmission pathways, with
bilinear incidence rates employed for both the environment-to-human
and human-to-human infection routes. No saturation effect was con-
sidered in Tien and Earn’s work. A rigorous global stability analysis
was conducted in [23] for many of the afore-mentioned models. In ad-
dition, Neilan et al. [17] in 2010 modified the cholera model proposed
by Hartley, Morris and Smith [9] and added several control measures
into the model. They consequently analyzed the optimal intervention
strategies and conducted numerical simulation based on their model. No
human-to-human infection route is considered in this work.

In the present paper, we aim to better understand the effects of dif-
ferent control measures coupled with multiple transmission pathways
of cholera, so as to gain useful guidelines to the effective prevention
and intervention strategies against cholera epidemics. To that end, we
study cholera dynamics with control measures incorporated into the
model of Mukandavire et al. [16] which involve both the environment-
to-human and human-to-human transmission modes. We modify the
original model by adding three types of controls: vaccination, therapeu-
tic treatment (including hydration therapy, antibiotics, etc.), and water
sanitation. In general, these control measures are functions of time. For
the special case with constant controls, we are able to rigorously analyze
the stabilities of the corresponding autonomous dynamical system. For
time-dependent controls, we will examine how the effects and costs of
control measures can be best balanced. Specifically, we will formulate
a state-adjoint system and derive the necessary conditions for the opti-
mal control strategies. We will then use numerical simulation to explore
various optimal control solutions involving single and multiple controls.

In what follows, we will first present the cholera model with control
measures incorporated. We will next conduct an equilibrium analysis
for the epidemic and endemic dynamics of the system when the rates
of the controls are constant. Then we will turn to the time-dependent
control system and perform an optimal control study for the cholera
model. Finally we will draw conclusions to close the paper.
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2 Mathematical model Let S(t), I(t) and R(t) denote the sus-
ceptible, the infected, and the recovered human population sets, respec-
tively. The total population N = S + I + R is assumed to be a con-
stant, which is a reasonable assumption for a relatively short period of
time and for low-mortality diseases such as cholera. Let also B denote
the concentration of the vibrios in the environment (e.g., contaminated
water). The cholera model developed in [16] is a combined system of
human populations and the environmental component (SIR-B), with
the environment-to-human transmission represented by a logistic (or,
Michaelis-Menten type) function and the human-to-human transmission
by the standard mass action law.

We now extend this model by adding vaccination, treatment and wa-
ter sanitation. We assume these controls are implemented continuously;
specifically, we make the following assumptions:

• Vaccination is introduced to the susceptible population at a rate of
v(t), so that v(t)S(t) individuals per time are removed from the sus-
ceptible class and added to the recovered class.

• Therapeutic treatment is applied to the infected people at a rate
of a(t), so that a(t)I(t) individuals per time are removed from the
infected class and added to the recovered class.

• Water sanitation leads to the death of vibrios at a rate of w(t).

As a result, we obtain the following dynamical system:

dS

dt
= µN − βeS

B

κ+B
− βhSI − µS−v(t)S,(1)

dI

dt
= βeS

B

κ+B
+ βhSI − (γ + µ)I −a(t)I,(2)

dB

dt
= ξI − δB − w(t)B.(3)

In addition, we have the equation for R :

(4)
dR

dt
= γI − µR+ a(t)I + v(t)S,

though this equation is not needed in the model analysis since R =
N − S − I. In this system, the parameter µ, ξ, δ, γ, κ, βe and βh

are all positive constants; µ denotes the natural human birth/death
rate, ξ is the rate of human contribution (e.g., shedding) to V. cholerae,
δ is the natural death rate of V. cholerae, γ is the rate of recovery
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from cholera, κ is the pathogen concentration that yields 50% chance
of catching cholera, and βe and βh represent rates of ingesting vibrios
from the contaminated water and through human-to-human interaction,
respectively. A typical set of numerical values for these parameters are
listed in Table 1 (see Section 4). In particular, when all controls are set
to zero, i.e., v = a = w = 0, the above system is reduced to the original
model developed in [16].

3 Equilibrium analysis For the special case when the rates of all
the three controls are positive constants, i.e., v(t) = v > 0, a(t) = a > 0,
and w(t) = w > 0, the model (1–3) is reduced to an autonomous system

dS

dt
= µN − βeS

B

κ+B
− βhSI − µS − vS,(5)

dI

dt
= βeS

B

κ+B
+ βhSI − (γ + µ)I − aI,(6)

dB

dt
= ξI − δB − wB.(7)

This allows us to conduct a careful equilibrium analysis to investigate
the effects of controls on the epidemic and endemic dynamics of cholera.

3.1 Epidemic dynamics The disease-free equilibrium (DFE) for the
model (5–7) is given by

(8) E0 =

(

µN

µ+ v
, 0, 0

)

.

We first compute the basic reproductive number for this model using the
method of van den Driessche and Watmough [25]. Here, the associated
next generation matrices are given by

F =





µβh
N

µ+v
µβe

κ
N

µ+v

0 0



 and V =





γ + µ+ a 0

−ξ δ + w



 .

The basic reproductive number is then determined as the spectral radius
of FV −1, which yields

(9) Rc
0 =

µN

(δ + w)κ(µ+ v)(γ + µ+ a)

[

ξβe + (δ + w)κβh

]

,
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where we have used the superscript c to emphasize the model with con-
trols. Compared to the basic reproductive number for the original no-
control model [16],

(10) R0 =
N

δκ(γ + µ)

[

ξβe + δκβh

]

,

we can clearly see Rc
0 ≤ R0. The result in equation (9) shows that,

mathematically, each of the three types of individual controls can reduce
the value of Rc

0 lower than 1 so that the disease will be eradicated (unless
backward bifurcation occurs, but we will show in Section 3.2 that this
is not applicable to our model). For example, suppose a = w = 0;
i.e., vaccination is the only control strategy implemented. Based on
equation (9), we can readily see that if R0 > 1, there is a critical value
for the vaccination strength, say v0, such that

µN

δκ(µ+ v0)(γ + µ)

[

ξβe + δκβh

]

= 1 ,

or

(11) v0 =
µN

δκ(γ + µ)

[

ξβe + δκβh

]

− µ .

When v > v0, R
c
0 < 1 and the disease can be eradicated. In contrast,

when v < v0, R
c
0 > 1 and the disease will persist. Practically, how-

ever, the strength of each control strategy would be limited by social
and economic factors as well as available resources, and the combination
of different intervention approaches would possibly achieve the best re-
sult. We will further explore this point in the optimal control study in
Section 4.

It follows from Theorem 2 in [25], that the disease-free equilibrium is
locally asymptotically stable when Rc

0 < 1. In contrast, if the controls
are not strong enough such thatRc

0 > 1, then the DFE becomes unstable
and a disease outbreak occurs. Let us compare the outbreak growth rates
between the original model and the model with controls. The positive
(dominant) eigenvalue of the Jacobian matrix at the DFE characterizes
the initial outbreak growth rate [24]. For the system (5–7), the Jacobian
at the DFE is given by

J(E0) =













−(µ+ v) −
µβhN
µ+v

−
µβeN
κ(µ+v)

0 µβhN
µ+v

− (γ + µ+ a) µβeN
κ(µ+v)

0 ξ −(δ + w)













.
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The characteristic equation is

(12) (λ+ µ+ v)

[

λ2 + (γ + µ+ a+ δ + w − βhS0)λ

+ (δ + w)(γ + µ+ a− βhS0)−
ξβe

κ
S0

]

= 0,

where S0 = µN
µ+v

. We can easily observe from equation (12) that there
are two negative eigenvalues and one positive eigenvalue when Rc

0 > 1;
this positive eigenvalue is given by

(13) λc
+ =

1

2

[

√

(γ + µ+ a− δ − w − βhS0)2 +
4ξβe

κ
S0

− (γ + µ+ a+ δ + w − βhS0)

]

.

Graphically, the value of λc
+ represents the steepness of the ascending

infection curve (with respect to time) when Rc
0 > 1. Thus, a higher λc

+

indicates a more severe disease outbreak.
It is clear that λc

+ > 0 when Rc
0 > 1, and λc

+ < 0 when Rc
0 < 1. This

result can also be interpreted by the values of the controls. For example,
let us assume R0 > 1. If we set a = w = 0 in equation (13), we see that
when v = 0, λc

+ > 0 (noting that Rc
0 = R0 > 1); and when v is large,

λc
+ < 0 (noting that Rc

0 < 1). Hence, there is a positive value for v, say
v0, such that λc

+ = 0; i.e.,

(14)

√

(γ + µ− δ − βhS0)2 +
4ξβe

κ
S0 = γ + µ+ δ − βhS0.

Equation (14) yields the same expression for v0 as given in (11). This
provides another perspective on the critical value v0, which is the vac-
cination strength that makes the initial outbreak growth rate exactly
zero. Furthermore, taking the derivative of λc

+ with respect to v (with
a = w = 0) yields

dλc
+

dv
=

λc
+

dS0

dS0

dv
=

−µN

(µ+ v)2

[

1

2

(γ + µ− δ − βhS0)(−βh) +
2ξβe

κ
√

(γ + µ− δ − βhS0)2 +
4ξβe

κ
S0

+ βh

]

< 0
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when Rc
0 > 1. This implies, as can be expected, that increasing the

strength of vaccination will reduce the disease outbreak growth rate.
In a similar way, we find the only positive eigenvalue of J(E0) for the

original cholera model, when R0 > 1, is given by

(15) λ+ =
1

2

[

√

(γ + µ− δ − βhN)2 +
4ξβe

κ
N − (γ + µ+ δ − βhN)

]

.

Equation (15) can also be obtained by setting v = a = w = 0 in equation
(13). The following result is a natural consequence of incorporating the
control measures.

Theorem 1. Assume v ≥ 0, a ≥ 0 and w ≥ 0. Then we have λc
+ ≤

λ+. Furthermore, λc
+ = λ+ if and only if v = a = w = 0.

The proof follows from elementary algebraic manipulations, noting
that

γ + µ+ a+ δ + w − βhS0 ≥ γ + µ+ δ − βhN.

In addition, we note that the DFE (8) is actually globally asymptot-
ically stable when Rc

0 < 1. This can be easily established based on the
DFE global stability condition theorem introduced by Castillo-Chavez
et al. [4], together with the fact that the DFE is locally asymptotically
stable when Rc

0 < 1.
We state the theorem below to summarize the above results:

Theorem 2. When Rc
0 < 1, where Rc

0 is defined in equation (9),
the DFE of the system (5-7) is both locally and globally asymptotically

stable. When Rc
0 > 1 , the DFE of the control model (5–7) is unstable,

with a lower outbreak growth rate than that of the original no-control

model.

3.2 Endemic dynamics As mentioned before, when the effects of the
controls are not strong enough to reduce Rc

0 below 1 , the DFE becomes
unstable and the disease will persist. Let us now study the endemic
equilibrium for the long-term behavior of cholera dynamics.

Denote the endemic equilibrium of the model (5-7) by

E∗ = (S∗, I∗, B∗).

We first show the following result.
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Theorem 3. A unique positive endemic equilibrium exists for the sys-

tem (5–7) if and only if Rc
0 > 1 .

Proof. From equations (5) and (7) we obtain

B∗ =
ξI∗

δ + w
and S∗ =

µN

µ+ v
−

(γ + µ+ a)I∗

µ+ v
.

Substituting these into the right-hand side of equation (6), we can derive
a quadratic equation for I∗ (after dropping the trivial solution I∗ = 0):

(16) A1I
∗2 +B1I

∗ + C1 = 0 ,

with

A1 = −βh(γ + µ+ a)ξ,

B1 = βhξµN − (γ + µ+ a)
[

βeξ + βh(δ + w)κ + (µ+ v)ξ
]

,

C1 = βeξµN − (γ + µ+ a)(µ+ v)(δ + w)κ + βhµκN(δ + w).

The roots of this quadratic equation must satisfy,

(17) I∗1 I
∗

2 =
C1

A1
and I∗1 + I∗2 = −

B1

A1
.

Note that A1 < 0 always holds. If Rc
0 > 1, then C1 > 0, and I∗1 I

∗

2 =
C1/A1 < 0. Thus, equation (16) has a unique positive root I∗ in this
case. Consequently, B∗ and S∗ are uniquely determined and positive, as
can be easily seen from the right-hand sides of equations (6) and (7). In
contrast, if Rc

0 < 1, then C1 < 0 so that I∗1 I
∗

2 > 0; if Rc
0 = 1, then C1 =

0, and so I∗1 I
∗

2 = 0. Meanwhile, whenRc
0 ≤ 1, we have µβhN

(γ+µ+a)(µ+v) < 1,

or µβhξN < (γ+µ+a)(µ+v)ξ; thus B1 < 0, and I∗1 +I∗2 = −B1/A1 < 0.
It then follows that when Rc

0 < 1, equation (16) has two negative roots
which are biologically nonfeasible; when Rc

0 = 1, equation (16) has one
zero root and one (biologically nonfeasible) negative root.

Next we establish the following theorem.

Theorem 4. When Rc
0 > 1, the endemic equilibrium E∗ is locally

asymptotically stable.
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Proof. The Jacobian of the system (5–7) at E∗ is given by

J(E∗) =













−P − (µ+ v) −βhS
∗ −Q

P βhS
∗ − (γ + µ+ a) Q

0 ξ −(δ + w)













,

where

P =
βeB

∗

κ+B∗
+ βhI

∗ and Q =
βeκS

∗

(κ+B∗)2
.

The characteristic polynomial of the matrix J(E∗) is

(18) det [λI − J(E∗)] = a0λ
3 + a1λ

2 + a2λ+ a3,

where

a0 = 1,

a1 = P + (δ + w) + (µ+ v) +
(

γ + µ+ a− βhS
∗
)

,

a2 =
[

(δ + w)(γ + µ+ a)−Qξ − βhS
∗(δ + w)

]

+ (µ+ v)
(

γ + µ+ a− βhS
∗
)

+ (P + µ+ v)(δ + w) + P (γ + µ+ a),

a3 = (µ+ v)
[

(δ + w)(γ + µ+ a)−Qξ − βhS
∗(δ + w)

]

+ P (γ + µ+ a)(δ + w).

The Routh-Hurwitz criterion [19] requires

(19) a1 > 0, a2 > 0, a3 > 0, and a1a2 − a0a3 > 0

as the necessary and sufficient conditions for the locally asymptotical sta-
bility; i.e., all roots of the polynomial (18) have negative real parts. Note
that at the endemic equilibrium, the right-hand sides of equations (6)
and (7) become 0, which yields

(20) γ + µ+ a = βhS
∗ +

βeξS
∗

κ(δ + w) + ξI∗
.

From equation (20) we can easily obtain

γ + µ+ a− βhS
∗ > 0,

(δ + w)(γ + µ+ a)−Qξ − βhS
∗(δ + w) > 0.
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Using the fact that all model parameters as well as P and Q are positive,
it is then straightforward to observe that all the inequalities in (19) hold.

Combining Theorems 2, 3 and 4, we see that a forward transcritical
bifurcation occurs at the bifurcation point Rc

0 = 1. Thus, the possibility
of backward bifurcation is precluded in our model. This has important
implication on the prevention and intervention strategies for cholera, as
reducing the basic reproductive number below one by using single or
multiple control measures would be sufficient to eradicate the disease.

4 Optimal control study Now we turn to the more general model
(1–3) with time-dependent controls v(t), a(t) and w(t). We consider the
system on a time interval [0, T ] . The functions v(t), a(t) and w(t) are
assumed to be at least Lebesgue measurable on [0, T ] . The control set
is defined as

Ω =
{(

v(t), a(t), w(t)
) ∣

∣ 0 ≤ v(t) ≤ vmax ,

0 ≤ a(t) ≤ amax , 0 ≤ w(t) ≤ wmax

}

,

where vmax, amax and wmax denote the upper bounds for the effort of
vaccination, treatment, and sanitation. These bounds reflect practical
limitations on the maximum rates of controls in a given time period.

The presence of time-dependent controls makes the analysis of the
system (1–3) difficult. In fact, the disease dynamics now depend on the
evolution of each control profile. In what follows we perform an optimal
control study on this problem. We aim to minimize the total number of
infections and the costs of controls over the time interval [0, T ]; i.e.,

(21) min
(v,a,w)∈Ω

∫ T

0

[

I(t) + c21v(t)S(t) + c22v(t)
2

+ c31a(t)I(t) + c32a(t)
2 + c41w(t) + c42w(t)

2
]

dt.

Here, the parameters cij (i = 2, 3, 4; j = 1, 2), with appropriate units,
define the appropriate costs associated with these controls. Quadratic
terms are introduced to indicate nonlinear costs potentially arising at
high intervention levels [2, 3, 17]. Particularly, the cost terms associated
with the sanitation, c41w(t) + c42w(t)

2, are taken from [17]. The mini-
mization process is subject to the differential equations (1–3), which are
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now referred to as the state equations. Correspondingly, the unknowns
S, I and B are now called the state variables, in contrast to the control

variables v, a and w. Our goal is to determine the optimal control, v∗(t),
a∗(t) and w∗(t), so as to minimize the objective functional in (21).

We first establish the following theorem on the existence of optimal
control.

Theorem 5. There exists
(

v∗(t), a∗(t), w∗(t)
)

∈ Ω such that the objec-

tive functional in (21) is minimized.

Proof. Note that the control set Ω is closed and convex, and the in-
tegrand of the objective functional in (21) is convex. Hence, based on
the standard optimal control theorems in [8], the conditions for the exis-
tence of optimal control are satisfied, as our model is linear in the control
variables. Indeed, the optimal control is also unique for small T due to
the Lipschitz structure of the state equations and the boundedness of
the state variables [8, 12].

We will follow the method described in [2, 13] to seek the optimal
control solution. This method is based on Pontryagin’s Maximum Prin-
ciple [20] which introduces the adjoint functions and represents an op-
timal control in terms of the state and adjoint functions. Essentially,
this approach transfers the problem of minimizing the objective func-
tional (under the constraint of the state equations) into minimizing the
Hamiltonian with respect to the controls.

Let us first define the adjoint functions λS , λI and λB associated
with the state equations for S, I and B, respectively. We then form the
Hamiltonian, H , by multiplying each adjoint function with the right-
hand side of its corresponding state equation, and adding each of these
products to the integrand of the objective functional. As a result, we
obtain

H = I(t) + c21v(t)S(t) + c22v(t)
2 + c31a(t)I(t)

+ c32a(t)
2 + c41w(t) + c42w(t)

2

+ λS

[

µN − βeS
B

κ+B
− βhSI − µS − v(t)S

]

+ λI

[

βeS
B

κ+B
+ βhSI − (γ + µ)I − a(t)I

]

+ λB

[

ξI − δB − w(t)B
]

.
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To achieve the optimal control, the adjoint functions must satisfy

dλS

dt
= −

∂H

∂S
= −c21v(t) + λS

[

βe

B

κ+B
+ βhI + µ+ v(t)

]

(22)

− λI

[

βe

B

κ+B
+ βhI

]

,

dλI

dt
= −

∂H

∂I
= −1− c31a(t) + λSβhS(23)

− λI

[

βhS − (γ + µ)− a(t)
]

− λBξ,

dλB

dt
= −

∂H

∂B
= λSβe

κS

(κ+B)2
− λIβe

κS

(κ+B)2
+ λB

[

δ + w(t)
]

,(24)

with transversality conditions (or final time conditions):

(25) λS(T ) = 0, λI(T ) = 0, λB(T ) = 0.

The characterizations of the optimal controls, v∗(t), a∗(t) and w∗(t), are
based on the conditions

(26)
∂H

∂v
= 0,

∂H

∂a
= 0,

∂H

∂w
= 0,

respectively, subject to the constraints 0 ≤ v ≤ vmax , 0 ≤ a ≤ amax ,
and 0 ≤ w ≤ wmax . Specifically, we have

v∗(t) = max
[

0, min
(

ṽ(t), vmax

)]

,(27)

a∗(t) = max
[

0, min
(

ã(t), amax

)]

,(28)

w∗(t) = max
[

0, min
(

w̃(t), wmax

)]

,(29)

where

ṽ(t) =
[

(λS − c21)S(t)
]

/ (2c22),(30)

ã(t) =
[

(λI − c31)I(t)
]

/ (2c32),(31)

w̃(t) =
[

λBB(t)− c41
]

/ (2c42).(32)

We summarize the above results by the theorem below:

Theorem 6. Given an optimal control
(

v∗(t), a∗(t), w∗(t)
)

and corre-

sponding solutions to the state equations (5–7), there exist adjoint vari-

ables satisfying the system (22–25). Furthermore, the optimal control of

the problem (21) is represented by (27–29).
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The overall optimality system, which consists of the state equations
with the initial conditions, the adjoint equations with the transversality
conditions, and the optimal control characterization, has to be solved
numerically. We apply the forward-backward sweep method [13] to solve
the optimality system in an iterative manner. First, the state equations
are solved forward in time by a fourth-order Runge-Kutta method, with
an initial guess for the control variables. Next, the adjoint equations
are solved backward in time using the solutions of the state equations.
The control is then updated with the new values of the state and adjoint
solutions, and the process is repeated until the solutions converge.

To carry out the numerical simulation, we list the values for the var-
ious transmission rates in the state equations (5–7) in Table 1. Particu-
larly, we take the values of µ, βe and βh from Zimbabwean cholera data
[16]; their values are thus specific to Zimbabwe and may be different
for other cholera endemic places. Meanwhile, the cost parameters in
(21) are assigned with appropriate values [17]. We also set the initial
infection number I(0) = 1000 and the entire period of time T = 100
days.

Parameter Symbol Value Source

Total population N 10,000

Natural human birth and death rate µ (43.5yr)−1 [26]

Concentration of V. cholerae in environment κ 106 cells/ml [6]

Rate of recovery from cholera γ (5 day)−1 [9]

Rate of human contribution to V. cholerae ξ 10 cells/ml-day [9]

Death rate of vibrios in the environment δ (30 day)−1 [9]

Ingestion rate from the environment βe 0.075/day [16]

Ingestion rate through human-human βh 0.00011/day [16]

interaction

TABLE 1: Cholera model parameters and values.

We first consider the following set of values for the cost parameters

(33) c21 = 2, c22 = 10, c31 = 10, c32 = 10, c41 = 10, c42 = 20.

The per capita cost for vaccination, c21 , takes a lower value than other
costs, based on the fact that vaccination is usually the most commonly
used intervention strategy for various infectious diseases. In particular,
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the World Health Organization [26] has recently strengthened its rec-
ommendation for using oral cholera vaccines to control epidemic and
endemic cholera.

Figure 1 shows the infection curves for the model without controls
(dashed line), i.e., v = a = w = 0, and that with the optimal controls
(solid line). It is clearly seen that the infection level has been signifi-
cantly reduced due to the incorporation of the three types of controls.
For comparison, let us also consider the case with vaccination being the
only control measure. The optimal control problem can be reformulated
to determine the optimal strategy for vaccination, by simply setting the
other two controls to zero (i.e., a = w = 0) and using the same cost pa-
rameters for vaccination. The infection curve with this vaccination-only
strategy is also shown in Figure 1 (dash-dot line). As can be expected,
the infection level with vaccination only is slightly higher than that with
multiple controls, yet it still shows significant improvement compared to
the no-control infection curve.
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FIGURE 1: Infection curves for the cholera model without control (v =
a = w = 0), with three controls in optimal balance, and with vaccination
only (a = w = 0) in optimal setting, based on the cost parameters in
(33).

Figure 2 shows the profiles of the optimal vaccination rates in these
two cases, i.e., with three controls combined and with vaccination only.
We observe a common pattern that the optimal vaccination rates are at
the maximum (umax = 0.7) initially and remain at that level for several
days (about 7 days for the first case, and 9 days for the second case),
before decreasing to almost zero. The shorter period that the maximum
vaccination rate stays in the first case is due to the combination of the
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other two types of controls. Additionally, we sketch the profiles of the
optimal treatment rate and sanitation rate in Figure 3. We observe that
the therapeutic treatment starts with the maximum rate (vmax = 0.5)
but rapidly decays to a level close to zero, whereas the sanitation rate
remains at a relatively low level for a much longer period of time.
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FIGURE 2: Optimal vaccination rates for the two cases: (a) with three
controls; and (b) vaccination only, based on the cost parameters in (33).
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FIGURE 3: Optimal balance of the treatment rate (a) and sanitation
rate (b), based on the cost parameters in (33).

Next, we consider another set of values for the cost parameters, by de-
creasing the per capita cost for the therapeutic treatment and increasing
the cost for sanitation:

(34) c21 = 2, c22 = 10, c31 = 2, c32 = 10, c41 = 100, c42 = 20.
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The vaccination cost is kept the same as before. We again conduct
simulations for the optimal strategy of the three controls combined and
that for vaccination only. The results are presented in Figures 4–6.

With the reduced costs for therapeutic treatment, we observe that
both the strength and effective period of the optimal vaccination rate
are decreased (see Figure 5-a). On the other hand, the optimal treat-
ment rate shows a significant increase (see Figure 6-a) to achieve the
optimal balance between controls. The treatment rate starts with the
maximum (vmax = 0.5) and stays there for more than 20 days, then
gradually decays but remains a significant level throughout almost the
entire period of 100 days. The increased level of treatment also accounts
for the rapid decay of the infection curve starting from the very begin-
ning (see Figure 4, solid line). This observation indicates that there is an
interaction between the vaccination and treatment in achieving the op-
timal balance; their relative costs play an important role in determining
the length and strength of each control.

In addition, we see there is no significant change to the level of the op-
timal sanitation rates based on the two different sets of cost parameters
(see Figure 3-b and Figure 6-b), which implies that the role of water
sanitation in containing a cholera outbreak seems to be minor in the
optimal balance of controls, under our model and population settings.
Particularly, we note that our model parameters are specific to Zim-
babwe, a land-locked country in middle Africa where the level of contact
between infected people and the estuarine environment is relatively low.

Finally, we mention that similar patterns are observed for different
initial infection sizes and different values of cost parameters, and other
results are not shown here.
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FIGURE 4: Infection curves for the cholera model without control (v =
a = w = 0), with three controls in optimal balance, and with vaccination
only (a = w = 0) in optimal setting, based on the cost parameters in
(34).
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FIGURE 5: Optimal vaccination rates for the two cases: (a) with three
controls; and (b) vaccination only, based on the cost parameters in (34).
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FIGURE 6: Optimal balance of the treatment rate (a) and sanitation
rate (b), based on the cost parameters in (34).

5 Conclusions We have presented a cholera epidemiological model
by incorporating three types of intervention strategies: vaccination, ther-
apeutic treatment, and water sanitation. This model represents a cou-
pling between multiple transmission pathways of cholera and multiple
control measures. In the case with constant controls, our equilibrium
analysis shows that the basic reproductive number for the control model,
Rc

0, plays a crucial role in determining the epidemic and endemic dynam-
ics. Specifically, we have established Rc

0 = 1 as a sharp threshold for
stability exchange between the DFE and the endemic equilibrium. For
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general time-dependent controls, we have applied the optimal control
theory to explore cost-effective balance of multiple intervention strate-
gies against cholera outbreaks. Out simulation results show that differ-
ent controls (such as vaccination and treatment) closely interplay with
each other, and the specific population settings and relative costs deter-
mine the length and strength of each control in an optimal strategy. We
have found that a combination of multiple intervention methods gen-
erally achieves better results than a single control such as vaccination
only.
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